G.T.N. ARTS COLLEGE (AUTONOMOUS)

Affiliated to Madurai Kamaraj University

Old Karur Road, Dindigul, Tamil Nadu - 624005

PG CHEMISTRY SYLLABUS

OBE SYLLABUS (2020 TO 2022)

DEPARTMENT OF CHEMISTRY (PG)

About the Department

G.T.N. Arts college is the only aided college functioning in Dindigul district for the welfare of urban and rural based men and women students. It caters to the needs of the most economically weaker students. Our chemistry department was started during the academic year 1971-72. In the year of 2000 the department was upgraded with P.G. Programme. The department was recognized as centre for research by Madurai Kamaraj University in the year 2003. It was started under the headship of Prof.K.Gopalan. The I Batch itself secured University ranks and 100% results. After Prof.Gopalan, Prof.P.Jayaram took charge as the Head of the department and then followed by Dr.N.Rajendran, Dr.S.Rajendran, Dr.M.S.Dheenadayalan, Dr.J.Sathiyabama and at present, Dr.A.Pandiarajan is the Head of the Department of Chemistry (PG). The P.G and research department has produced more than 30 Ph.D degree holders and 150 M.Phil degree holders. Our Chemistry Department is considered as one of the best departments in Madurai Kamaraj University affiliated colleges producing university rank holders and gold medalists. The department also offers consultation for various chemical based industries in and around Dindigul district. Our Chemistry students are regularly visiting various chemical industries and industrial estates every year as part of the academic and industrial relationships.

PRINCIPAL

Dr. P. Balagurusamy, M.A., M.Phil., M.Ed., P.G.D.C.A., Ph.D.,

STAFF MEMBERS

1	Dr.M.S. Dheenadayalan, M.Sc., M.Phil., Ph.D.,	Associate Professor and
		Dean
2	Dr.A. Pandia Rajan, M.Sc., M.Phil., Ph.D.,	Assistant Professor and
		Head
3	Mrs.K. Rathika, M.Sc., M.Phil., (Ph.D).,	Assistant Professor
4	Mr. S. Philip Arockia Raj, M.Sc., M.Phil., (Ph.D).,	Assistant Professor
5	Mrs.V. Vanitha, M.Sc., M.Phil., (Ph.D).,	Assistant Professor
6	Ms.P. Angel, M.Sc., M.Phil., (Ph.D).,	Assistant Professor
7	Mrs.A. Mariammal, M.Sc., M.Phil., (Ph.D).,	Assistant Professor
8	Mrs.M. Shanmuga Priya, M.Sc.,B.Ed., M.Phil.,	Assistant Professor
9	Mrs.S. Sulochana, M.Sc., M.Phil., (Ph.D).,	Assistant Professor
10	Dr.S. Ignatius Arockiam, M.Sc., B.Ed., M.Phil.,	Assistant Professor
	Ph.D.,	
11	Mrs.G. Benita, M.Sc., B.Ed., M.Phil.,	Assistant Professor
12	Mrs.G. Nivetha, M.Sc., B.Ed., (M.Phil).,	Assistant Professor
13	Dr.K. Muthu Vengaian, M.Sc., M.Phil, Ph.D.,	Assistant Professor
14	Dr.R. Shanmuga Selvan, M.Sc., Ph.D.,	Assistant Professor
15	Ms.A. Divya Lakshmi, M.Sc., M.Phil.,	Assistant Professor
16	Ms.N. Suba Lekha, M.Sc., M.Phil.,	Assistant Professor

Programme Outcomes

On successful completion of the M.Sc. programme, the graduates will be able to,

- 1. Apply the knowledge acquired in the respective disciplines and also have a multidisciplinary perspective towards the study of sciences.
- 2. Attain skills like analytical reasoning, critical thinking and problem solving to evince interest in higher education and research for offering solutions to societal and environmental problems.
- 3. Communicate articulately and effectively and interpret the results obtained from scientific studies and put forth innovative ideas to carve a niche in their domain.
- 4. Instill the principles and ethics learnt from the field of study and exhibit the qualities like leadership, entrepreneurship and teamwork for discharging their duties as resPSOnsible citizens.
- 5. Utilize the growing advancements in Information and Communication Technology and embrace digital learning to become life-long learners.

Programme Specific Outcomes

After successful completion, Graduates will be able to

- **PSO 1** Gain Knowledge on all the branches of Chemistry including applied chemistry.
- **PSO 2** Develop Analytical skills that are used to analyze the chemical compound applying modern techniques.
- **PSO 3** Face Environmental issues and become a lifelong learner, a responsible citizen and also a renowned scientist on applying their knowledge learned through this curriculum.
- **PSO 4** Undertake career in industries at the national and global level and also get opportunities for carrying out research programme in all branches of Chemistry.
- **PSO 5** Gain Knowledge on the subject to succeed in competitive examinations and acquire skills to be a successful entrepreneur.
- **PSO 6** Improve the skill of the students in all the branches of Chemistry area and also good laboratory practice and safety.

Course Pattern for M.Sc Chemistry

The Post Graduate degree course consists of five vital components. They are as follows:

Part III Core Courses (Theory, Practical, Electives, NME, Project and Internship).

Objectives

The Syllabus for M.Sc Chemistry Programme under semester system has been designed on the basis of Outcome Based Education (OBE), which would focus on job oriented programmes and value added education. It will come into effect from June 2020 onwards.

Eligibility

Candidates should have passed the Higher Secondary Examination, Government of Tamil Nadu and; examination accepted by the syndicate of Madurai Kamaraj University as equivalent there to.

Duration of the Course

The students who join the M.Sc Chemistry Programme shall undergo a study period of two academic years – Four semesters.

Part	Semester	Specification	No. of Courses	Hrs	Credit	Total credits
III	I-IV	Core Courses Theory Practical Electives Project	14 3 2 1	67 28 9 10	67 14 9 5	95
	III	Non Major Elective Course	1	6	5	5
0	Overall Total for all Semesters			120	100	100

Summary of Hours and Credits – M.Sc Chemistry

Sem.	Part	Study Component	Course Code	Course Title	Hrs	Credit
		Core Course I	20PCHC11	Organic Chemistry – I	5	5
	III	Core Course II	20PCHC12	Inorganic Chemistry – I	5	5
Ι		Core Course III	20PCHC13	Physical Chemistry – I	5	5
1		Core Course IV	20PCHC14	Analytical Method - I	5	5
		Core Practical I	20PCHC1P	Organic Chemistry Practical	10	5
			Tota		30	25
		Core Course V	20PCHC21	Organic Chemistry – II	5	5
		Core Course VI	20PCHC22	Inorganic Chemistry – II	5	5
	ш	Core Course VII	20PCHC23	Physical Chemistry – II	5	5
II		Core Course VIII	20PCHC24	Analytical Method – II	5	5
		Core Practical II	20PCHC2P	Inorganic Chemistry Practical	10	5
		Total			30	25
		Core Course IX	20PCHC31	Organic Chemistry –III	4	4
		Core Course X	20PCHC32	Inorganic Chemistry – III	4	4
		Core Course XI	20PCHC33	Physical Chemistry – III	4	4
III	III	Core Elective Course I	20PCHE31/ 20PCHE32	1. Pharmaceutical Chemistry 2. Macromolecular Chemistry	4	4
		Core Practical III	20PCHC3P	Physical Chemistry Practical	8	4
		Non Major Elective Course I	20PCHN31	Environmental Science	6	5
			Tota	1	30	25
		Core Course XII	20PCHC41	Organic Chemistry –IV	5	5
	III	Core Course XIII	20PCHC42	Inorganic Chemistry – IV	5	5
IV		Core Course XIV	20PCHC43	Physical Chemistry – IV	5	5
		Core Elective Course II	20PCHE41/ 20PCHE42	 Nano Chemistry Green Chemistry 	5	5
	III	Core Project I	20PCHC4P	Project Work	10	5
	Total				30	25
				Total of all Four Semesters	120	100

Programme	M.Sc Chemistry	Programme Code	РСН		
Course Code	20PCHC11	Number of Hours/Cycle	5		
Semester	Ι	Max. Marks	100		
Part	III	Credit	5		
	Core	Course I			
Course Title	Organic Chemistry – I				
Cognitive level Up to K4					

This course deals the concepts of Reaction Mechanism, Aliphatic Nucleophilic substitution, aromatic electrophilic substitution and the concepts Aromatic Characters. Synthesis of important terpenes and alkaloids.

Unit 1 Introduction to Reactions

Reaction intermediates - free radicals, carbenes, nitrenes, carbanions and carbocation's - formation and stability of reaction intermediates - methods of determination of reaction mechanism – kinetic and thermodynamic control of chemical reactions. Principle of microscopic reversibly - Energy profile diagram - Hammond Postulate. Addition compounds - EDA complexes - inclusion compounds - effect of structure on the dissociation constants of acids and bases - concept of Hard and Soft acids and bases.

Unit 2 Substitution Reactions-I

Aliphatic nucleophilic substitution – Mechanisms; SN1, SN2, SNi – stereochemical aspects of nucleophilic substitution reactions - Ion-pairs in SN1 mechanism - Neighbouring group participation - Non-classical carbocations - Substitutions at allylic and vinylic carbons - Reactivity: Effect of structure, nucleophile, leaving group and solvent - Ambident substrates and nucleophiles. Aliphatic electrophilic substitution: SE1, SE2, SEi mechanisms -Simple examples only.

Unit 3 Substitution Reactions-II

Aromatic electrophilic substitution- orientation -reactivity - mechanism of nitration, halogenations, Friedel-Craft's reaction and sulphonation - partial rate factors ortho/para ratio - Quantitative treatment of reactivity of the electrophile - Aromatic nucleophilic substitution reactions- SnAr, Sn1and benzyne mechanisms. Quantitative treatment of the effect of structure on reactivity – The Hammen relationship –siginficance of reaction and substitutents constants - application of the Hammett equation in reaction mechanism - limitations and deviations.

Unit 4 Aromatic Character

Aromatic character in benzene, six membered rings, five, seven, eight membered rings-other systems with aromatic sextets - Huckel's rule. Craig's rule - concept of homo aromaticity and anti aromaticity - systems with 2, 4, 8, 10 and more than 10 electrons -Alternant and nonalternant hydrocarbons. Chemistry of cyclopentedienyl anion - Fulvene, Azulene and Annulens.

Novel Ring System

Nomenclature of bicyclic and tricyclic systems - chemistry of adamantine, diamantine [congressane], cubane and catenanes.

Unit 5 Terpenes And Alkaloids

Introduction - classification - isoprene rule - structural determination of terpenoids'- α - pinene, camphor, zingiberene, cadinene, α -santinin, abietic acid and squalene.

Introduction - isolation of alkaloids - total synthesis of quinine - morphine and reserpine. Pedagogy

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Book

1. Jain M.K, Sharma S.C, (2017), "Modern Organic Chemistry", Vishal Publishing Co, JALANDHAR - 144 008 (PB.) INDIA. Golden Jubilee Yr. Revised Edition.

15 Hours

15 Hours

15 Hours

15 Hours

- 2. Renuga S,(2017), "Name Reactions and Reagents in Organic synthesis", Vishal Publishing Co,JALANDHAR 144 008 (PB.) INDIA. Golden Jubilee Yr. Revised Edition
- 3. Mukherji S.M, Singh, S.P, (1990) "Organic Reaction Mechanism", MacMillan India Ltd., Chennai.

References

- 1. Sykes P, (1976), "Guidebook to Mechanism in Organic Chemistry", Orient Longman.
- 2. Jerry March, John Wiley & Sons,(2015), "Advanced Organic Chemistry", 7th Edition.
- 3. I.L Finar, (2002), ELBS, "Organic Chemistry", Vol. 1 and 2.5th,6 th Edition

E-Resources

- Organic syntheses.
- Science of synthesis.
- Dictionary of organic compounds .
- Dictionary of natural products
- Dictionary of organic compounds .

Course Outcomes

On successful completion of the course, the student will be able to

0

011 00000000					
CO1	Illustrate the Reactive intermediates and its properties				
CO2	Explain the aliphatic nucleophilic and electrophilic substitution reactions				
CO3	Interpret the aromatic electrophilic and nucleophilic substitutions reactions				
CO4	Categorize the Aromaticity of organic compounds and its applications				
CO5	Inference the synthesis of important terpenes and alkaloids.				
	Manning of Course Outcomes with Programme Specific Outcomes				

Mapping of Course Outcomes with Programme Specific Outcomes							
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	2	2	0	2	2	0	
CO2	2	2	3	3	3	3	
CO3	2	0	2	0	0	2	
CO4	3	3	3	0	3	0	

1 - Low, 2 - Medium & 3 - High

2

CO5

Articulation Mapping - K Levels with Course Outcomes (COs)

0

3

2

3

				tion A	Section B	Section C
Units	ts Cos K – Level MCQs		MCOS		Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
3	CO3	Up to K3	2	K1 & K2	2(K2&K2)	1(K3)
4	CO4	Up to K4	2	K1 & K2	2(K2&K2)	1(K4)
5	CO5	Up to K4	2	K1 & K2	2(K4&K4)	1(K4)
No of	Questions	s to be asked	10		10	5
No of	No of Questions to be		10		5	3
answered						
Marks for each Question		1		4	10	
Total N	Aarks for	each	10		20	30
Section	ı					

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or Choice)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	24	10	39	39%	39%
K3	-	8	20	28	28%	28%
K4	-	8	20	28	28%	28%
Total Marks	10	40	50	100	100%	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Description	Hours	Mode
	Reaction intermediates – free radicals, carbenes, nitrenes, carbanions and carbocation's – formation and stability of reaction intermediates `	5	Chalk and talk, Power Point presentation
I	methods of determination of reaction mechanism – kinetic and thermodynamic control of chemical reactions	4	
	Addition compounds - EDA complexes – inclusion compounds	3	
	Effect of structure on the dissociation constants of acids and bases – concept of Hard and Soft acids and bases.	3	
	Aliphatic nucleophilic substitution – Mechanisms; SN1, SN2, SNi – stereochemical aspects of nucleophilic substitution reactions.	4	Chalk and talk, Power Point presentation
II	Ion-pairs in SN1 mechanism – Neighbouring group participation – Non-classical carbocations.	4	
	Substitutions at allylic and vinylic carbons – Reactivity: Effect of structure, nucleophile, leaving group and solvent – Ambident substrates and nucleophiles.	4	
	Aliphatic electrophilic substitution: SE1, SE2, SEi mechanisms – Simple examples only.	3	
	Aromatic electrophilic substitution- orientation –reactivity.	3	Chalk and talk, Power Point
	mechanism of nitration, halogenations, Friedel- Craft's reaction and sulphonation	3	presentation
ш	partial rate factors ortho/para ratio – Quantitative treatment of reactivity of the electrophile.	2	
	Aromatic nucleophilic substitution reactions- SnAr, Sn1and benzyne mechanisms.	3	
	Quantitative treatment of the effect of structure on reactivity – The Hammen relationship – significance of reaction and substitutents constants – application of the Hammett equation in reaction mechanism – limitations and deviations.	4	

	Aromatic character in benzene, six membered		Chalk and talk,
	rings, five, seven, eight membered rings-other systems with aromatic sextets– Huckel's rule.	3	Power Point presentation,
	Craig's rule - concept of homo aromaticity and anti aromaticity.	3	Group Discussion
IV	Craig's rule - concept of homo aromaticity and anti aromaticity - systems with 2, 4, 8, 10 and more than 10 electrons	3	
ĨŸ	Alternant and nonalternant hydrocarbons.Chemistry of cyclopentedienyl anion –Fulvene, Azulene andAnnulens.		-
	Novel Ring System: Nomenclature of bicyclic and tricyclic systems – chemistry of adamantine, diamantine [congressane], cubane and	3	
	catenanes.	2	Challs and talls
V	Introduction - classification - isoprene rule structural determination of terpenoids'- α - pinene, camphor, zingiberene, cadinene , α - santinin, abietic acid and squalene.	6	Chalk and talk, Power Point presentation, Group
	Introduction - isolation of alkaloids	3	Discussion
	total synthesis of quinine - morphine and	4	1

Course Designed by 1. Dr.A.Pandiarajan, 2. Dr.M.S.Dheenadayalan

Programme	M.Sc Chemistry	Programme Code	РСН	
Course Code	20PCHC12	Number of Hours/Cycle	5	
Semester	I	Max. Marks	100	
Part	III	Credit	5	
	Core Co	ourse II		
Course Inorganic Chemistry – I				
Cognitive Level Up to K4				

The objective of the course is to impart knowledge in bonding reaction mechanisms and various theories and basic concept of coordination compounds.

Unit I Chemical Bonding I

Nature of Covalent Bond –Valence Bond Theory (VBT)- Concept of Resonance –Molecular Orbital Theory (MOT) – Molecular orbital Configurations of Some Homonuclear Diatomic Species – Bond Multiplicity – Molecular orbital Configurations of Some Heteronuclear Diatomic Species – Shapes of Covalent Molecules – Crystal field theory(CFT)-Crystal field splitting in octahedral, tetrahedral and square planar complexes-Limitation of CFT.

Unit II Chemical Bonding -II

Ionic radii-covalent radii-Vanderwaals radius-bond length, bond order, bond Polaritypartial ionic character of covalent bonds-electro negativity –electron affinity-lattice energy-Born Haber Cycle-covalent character in ionic compounds-different types of electrostatic interactions-Hydrogen bond.

Unit III Coordination Chemistry-I

Quantum numbers- JJ Coupling, spin multiplicity, spin-spin coupling , orbit-orbit coupling, spin-orbit coupling-Term symbol-Terms for d electron system-Ground terms for d^n configuration-selection rule for electronic transitions-Charge transfer transition-Jahn Teller effect- Orgel diagram-Electronic spectra of d^2 , d^3 , d^7 and d^8 ions in octahedral and tetrahedral field, Tanabe-Sugano diagram for d^2 and d^3 ions.

Unit IV Coordination Chemistry – II

Trans effect-Trans effect series-uses of trans effects-theories of trans effects-The polarization theory and pi-bonding theory-Factors affecting the rate of substitution reaction in square planar complexes-cis trans isomerism in planar complexes-substitution reaction in octahedral complexes, SN₁CB mechanisms, Labile and inert complexes.

Unit V Coordination Chemistry - III

Mechanism of one electons transfer reactions- inner sphere mechanisms –direct electron transfer reactions-outer sphere mechanism 5,6 -Factors affecting the rates of direct electron transfer reactions-Two electron transfer reactions- complementary and non-complementary reactions.

Pedagogy

Lecture by use of boards, LCD projectors, Assignments, Seminars, Laboratory experiments/teaching aids Self- learning such as use of NPTEL materials and internets, Simulation.

Text Books

- 1. Puri B.R, Sharma L.R, and Pathania M.S, (2019)"*Advanced inorganic chemistry*" Vishal Publishing Co.,
- 2. Soni L, KatyalM, (2010)"*Text book of Inorganic Chemistry*", Sultan Chand and Publishers, 20threvised Edition.
- 3. Douglas B, Me Daniel D.H and J.J 2001, "Alexander, Concepts and Models of Inorganic Chemistry", John Wiley and Sons, New Delhi,.

15 Hours

15 Hours

15 Hours

15 Hours

15 Hours of

Reference Books

- 1. Cotton F.A, and Wilkinson G, John Wiley & Sons, (1998), "Advances Inorganic Chemistry" 5th Edition, Singapore
- 2. Mackay K.M, and Mackay R.A,1989, "Introduction to Modern Inorganic Chemistry", 4th Edition, Prentice Hall, New Jersey.
- 3. James HuheeyE, Ellen KeitlerA, and Richard KeitlerL, (1993), "Inorganic Chemistry", 4th Edition Harper Collins College Publishers, New York.

E-Resources

- Dictionary of Inorganic and Organometallic Compounds .
- Aldrich Catalog: Organics and Inorganics for Chemical Synthesis.
- Annual Review of Inorganic Chemistry.
- Nature Inorganic Chemistry.
- Combined Chemical Dictionary.

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Apply the various theories of VBT, MOT, CFT and its limitations.			
CO2	Analyse the concepts of chemical bonding.			
CO3	Interpret the electronic transition metal complexes in coordination chemistry.			
CO4	Categorize the Ligands substitution reaction in coordination complexes.			
CO5	D5 Justify the electron transfer reactions in coordination compounds.			

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	3	2	3	2
CO2	3	2	3	2	2	0
CO3	2	0	2	2	3	0
CO4	2	2	3	0	3	2
CO5	2	2	3	2	2	3

Low, 2 – Medium & 3- High

Articulation Mapping - K Levels with Course Outcomes (COs)

		-	Secti	ion A	Section B	Section C
Unit	COs		MCQs No. of Question s K-Level		Either/or Choice	Open Choice
s	COS	K – Level			No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
3	CO3	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
4	CO4	Up to K4	2	K1 & K2	2(K3&K3)	1(K4)
5	CO5	Up to K4	2	K1 & K2	2(K4&K4)	1(K4)
No of	Questions	to be asked	10		10	5
No of Questions to be answered		10		5	3	
Marks for each Question		1		4	10	
Total N	Marks for	each Section	10		20	30

K1 - Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or Choice)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	8	10	23	23%	23%
K3	-	24	20	44	44%	44%
K4	-	8	20	28	28%	28%
Total Marks	10	40	50	100	100%	100%

Distribution of Section –wise Marks with K Levels

	Lesson Plan		
Unit	Description	Hours	Mode
	Nature of Covalent Bond –Valence Bond	3	Chalk and talk,
	Theory (VBT)	5	Power Point
	Concept of Resonance –Molecular Orbital	3	presentation
	Theory (MOT)	U	
	Molecular orbital Configurations of Some	_	
Ι	Homonuclear Diatomic Species – Bond	3	
1	Multiplicity		
	Molecular orbital Configurations of Some		
	Heteronuclear Diatomic Species – Shapes of	3	
	Covalent Molecule.		
	Crystal field theory(CFT)-Crystal field splitting		
	in octahedral, tetrahedral and square planar	3	
	complexes-Limitation of CFT.		
	Ionic radii-covalent radii-Vanderwaals radius-		Chalk and talk,
	bond length, bond order, bond polarity-partial	5	Power Point
	ionic character of covalent bonds.		presentation
II	electro negativity –electron affinity	3	
	lattice energy-Born Haber Cycle-covalent	4	
	character in ionic compounds	4	
	different types of electrostatic interactions-	2	
	Hydrogen bond.	3	
	Quantum numbers- JJ Coupling, spin		Chalk and talk,
	multiplicity, spin-spin coupling , orbit-orbit	3	Power Point
	coupling, spin-orbit coupling		presentation
	Term symbol-Terms for d electron system-	2	
	Ground terms for dn configuration.	3	
III	selection rule for electronic transitions-Charge	3	
	transfer transition-Jahn Teller effect	3	
	Orgel diagram-Electronic spectra of		
	d2,d3,d7and d8 ions in octahedral and	3	
	tetrahedral field.		
	Tanabe-Sugano diagram for d2 and d3 ions.	3	
	Trans effect-Trans effect series-uses of trans		Chalk and talk,
	effects-theories of trans effects	3	Power Point
	The Polarization theory and pi-bonding theory	3	presentation
	Factors affecting the rate of substitution		1
IV	reaction in square planar complexes-cis trans	3	
	isomerism in planar complexes		
	Substitution reaction in octahedral complexes	3	
	SN ₁ CB mechanisms, Labile and inert		1
	complexes.	3	
	Mechanism of one electons transfer reactions-		Chalk and talk,
	inner sphere mechanisms	4	Power Point
	direct electron transfer reactions-outer sphere		presentation.
	mechanism	4	r
V	5,6 -Factors affecting the rates of direct		1
	electron transfer reactions	3	
	Two electron transfer reactions-		1
	complementary and non-complementary	4	
	reactions		
	signed by 1 Dr M S Dheenadayalan		A Mariammal

Course Designed by 1. Dr.M.S.Dheenadayalan

2. Mrs.A.Mariammal

Programme	M.Sc Chemistry	Programme Code	РСН		
Course Code	20PCHC13	Number of Hours/Cycle	5		
Semester	Ι	Max. Marks	100		
Part	III	Credit	5		
	(Core Course III			
Course Title	Physical Chemistry	- I			
Cognitive level Up to K4					

This course provides various laws of electrochemistry and different principles of electrochemistry and also provides the applications of electrochemistry. Various reactions of photochemistry and chemistry in nanoscience are to be discussed.

Unit 1 Electrochemistry - I

15 Hours

15 Hours

Ions in Solutions: Conductivity of solutions and their measurement - the Arrhenius ionisation theory - transport numbers and mobilities of ions - measurement of transport numbers - Hittorff method and moving boundary method - ionic activities and activity coefficients and their determination by various methods - Debye-Huckel Onsager theory - ionic atmosphere - Debye-Huckel limiting law - Electrolytic conductance – Kohlrausch's law and its applications; ionic equilibria; conductometric and potentiometric titrations.

Unit 2 Electrochemistry - II

Metal/Electrolyte Interface: Outer Helmholtz plane and Inner Helmholtz plane (IHP) - Potential profile across double layer region - Potential difference across electrified interface - Structure of the double layer - Helmholtz-Perrin, Gouy-Chapman, and Stern models – Electrode kinetics - Butler-Volmer equation—one step one electron transfer kinetics - exchange current density - Tafel equation and plots - Polarizable and non-Polarizable interfaces - Hydrogen overpotential – Theories of hydrogen overvoltage - Mechanism of hydrogen evolution reactions - Passivity – electrochemical corrosion and its protection.

Unit 3 Electrochemistry – III

15 Hours

15 Hours

Electrochemical Cells: Measurement of EMF - calculation of the EMF of a cell - the - the electrochemical Potential - the cell EMF and the cell reaction - reversible cells - types of half cells - the standard EMF of a cell - standard electrode Potentials - calculation of EMF of a cell - Nernst equation and its limitations - solubility products - calculation of solubility products standard free energies and entropies of aqueous ions - electrode and electrolyte concentration - liquid junction Potential - measurement of pH, concentration cells with transference.

Unit 4 Photochemistry

Absorption and emission of radiation – Theories – Spontaneous and induced emission –Laser-– Jablonski diagrams – Emission – Resonance emission – Selection rule – Fluorescence – Phosphorescence – Delayed fluorescence- E and P type – Excimer and Exciplex complex formation – Stern Volmer equation – Photosensitization-Chemiluminescence – Experimental techniques Actinometry - Photochromism – Photostabilization

Unit 5 Nano Chemistry

Nanomaterials – Preparation: Plasma arcing - Chemical vapor deposition – Sol-gel method – silica gels – Zirconia and ytrrium gels – Aluminosilicate gels – Electrodeposition – Ball milling –Applications of nanomaterials – Machine tools – Batteries – High Power magnets – Motor vehicles and aircraft.

Pedagogy

Chalk and talk method, Class Room Lectures, Power Point presentation, Group Discussion, Seminar and Case Study.

Text Books

1. John M. Bockris and Amulya K.N, Reddy,(2000),"*Modern Electrochemistry*", Vol. I & II, 2ndEdition,Springer, New Delhi.

2. Rohatgi Mukherjee K.K., (2009), "Fundamentals of photochemistry", New Age International Pvt. Ltd., New Delhi.

Reference Books

- 1. Atkin's, (2014), "*Physical Chemistry*", Peter Atkins and Julio de Paula Oxford Publishers.
- 2. J.P Srivastava, (2003), "Elements of Solid state Physics", Prentice Hall of India.
- 3. Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse, (2004), "*Nanotechnology Basic Science and Emergin Technologies*", Chapman & Hall (CRC).

E-Resources

- Annual Review of Physical Chemistry.
- Smithsonian Physical Tables.
- Lange's Handbook of Chemistry.
- Nature Physical Chemistry.
- Hawley's Condensed Chemical Dictionary.

Course Outcomes

On successful completion of the course, the student will be able to

	\mathbf{r}
CO1	Infer the fundamentals of electrochemistry and
COI	develop the knowledge in electro chemistry
CO2	Apply the Principles of electrochemical cell models
CO3	Analyze the Applications of electrochemical cell models
CO4	Categorize the various instrumental techniques in photochemistry
CO5	Interpret the various functions of Nanoscience and nanotechnology.
	Manning of Course Outcomes with Programma Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	3	0	0
CO2	3	3	2	0	3	3
CO3	2	0	3	0	2	2
CO4	2	3	0	3	0	0
CO5	3	3	2	3	3	3

1 - Low, 2 - Medium & 3 - High

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units	Cos	K – Level	MCQs No. of Question S K-Level		Either/or Choice	Open Choice
Units	Cos	K – Levei			No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2 (K2&K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
3	CO3	Up to K4	2	K1 & K2	2(K3&K3)	1(K4)
4	CO4	Up to K4	2	K1 & K2	2(K4&K4)	1(K4)
5	CO5	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
No of 0	No of Questions to be asked		10		10	5
No of Questions to be answered		10		5	3	
Marks for each Question		1		4	10	
Total N	Marks for	each Section	10		20	30

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or Choice)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	8	10	23	23%	23%
K3	-	24	20	44	44%	44%
K4	-	8	20	28	28%	28%
Total Marks	10	40	50	100	100%	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Description	Hours	Mode
	Ions in Solutions: Conductivity of solutions and		Chalk and talk,
	their measurement - the Arrhenius ionisation	4	Power Point
	theory - transport numbers and mobilities of		presentation
	ions - measurement of transport numbers		_
	Hittorff method and moving boundary method -		
I	ionic activities and activity coefficients and	4	
	their determination by various methods		
	Debye-Huckel Onsager theory - ionic		
	atmosphere - Debye-Huckel limiting law -	5	
	Electrolytic conductance – Kohlrausch's law	5	
	and its applications; ionic equilibria;		
	conductometric and potentiometric titrations.	2	
	Metal/Electrolyte Interface: Outer Helmholtz		Chalk and talk,
	plane and Inner Helmholtz plane (IHP) -	4	Power Point
	potential profile across double layer region -	4	presentation
	Potential difference across electrified interface		
	Structure of the double layer - Helmholtz-		
	Perrin, Gouy-Chapman, and Stern models –		
II	Electrode kinetics - Butler-Volmer equation-	6	
	one step one electron transfer kinetics -		
	exchange current density		
	Tafel equation and plots - Polarizable and non-	2	
	polarizable interfaces - Hydrogen overpotential	Z	
	Theories of hydrogen overvoltage - Mechanism		
	of hydrogen evolution reactions - Passivity -	3	
	electrochemical corrosion and its protection.		
	Electrochemical Cells: Measurement of EMF -		Chalk and talk,
	calculation of the EMF of a cell - the	4	Power Point
	electrochemical Potential - the cell EMF and	+	presentation
	the cell reaction		
	reversible cells - types of half cells - the		
III	standard EMF of a cell - standard electrode	3	
111	Potentials - calculation of EMF of a cell		
	Nernst equation and its limitations - solubility	3	
	products - calculation of solubility products	5	
	standard free energies and entropies of aqueous		
	ions - electrode and electrolyte concentration -	5	
	liquid junction Potential - measurement of pH,	5	
	concentration cells with transference.		

	Absorption and emission of radiation – Theories – Spontaneous and induced emission – Laser – Jablonski diagrams	5	Chalk and talk, Power Point presentation
IV	Emission – Resonance emission – Selection rule – Fluorescence – Phosphorescence – Delayed fluorescence- E and P type	4	
	Excimer and Exciplex complex formation – Stern Volmer equation – Photosensitization 3		
	Chemiluminescence – Experimental techniques Actinometry - Photochromism – Photostabilization.	3	
	Nanomaterials – Preparation: Plasma arcing	4	Chalk and talk,
v	Chemical vapor deposition – Sol-gel method – silica gels – Zirconia and ytrrium gels – Aluminosilicate gels	4	Power Point presentation, Group
	Electrodeposition – Ball milling –Applications of nanomaterials – Machine tools	4	Discussion
	Batteries – High Power magnets – Motor vehicles and aircraft.	3	

Course Designed by 1. Dr.S.K.Selvaraj

2. Dr.S.Ignatius Arockiam

Programme	M.Sc Chemistry	Programme Code	РСН
Course	20PCHC14	Number of	5
Code		Hours/Cycle	
Semester	Ι	Max. Marks	100
Part	III	Credit	5
		Core Course IV	
Course	Analytical Method -	·I	
Cognitive Lev	vel Up to K4		

Students will be dealing with fundamental concepts in analytical chemistry and to study the various methods involved in analytical techniques and to learn the quantitative measurements in the absorption and emission spectroscopy. To learn the separation process using various chromatographic techniques and the knowledge of electrochemistry in practical applications.

Unit 1 Quantitative Analysis And Precipitation Techniques

Theoretical basis of quantitative inorganic analysis-common ion effect solubility product, effect of acid, temperature and solvent upon the solubility of a precipitate. Formation and treatment of precipitates-co precipitation and Post-precipitation. Precipitation from homogeneous solution. Specific and selective precipitants. Principles of acid-base, oxidationreduction, precipitation and complexometric titrations-indicators used in such titrations. Uses of organic reagents in inorganic quantitative and qualitative analysis.

Unit 2 Error Analysis

Errors in chemical analysis – Defining terms: mean, median, accuracy and precision – classification of errors: Systematic errors and random errors. Improving accuracy of analysis – mean, standard deviation and Q-test. Comparison of results – Least square, T-test, F-test.

Unit 3 Spectro Analytical Methods

Colorimetry: Theoretical and practical aspects of colorimetric analysis. Flame emission and atomic absorption spectroscopy – types of atomic spectroscopy – emission methods – absorption methods – fluorescence methods – flame atomizers – Electro thermal atomizers – principle and applications of atomic absorption spectroscopy. Advantages of atomic absorption spectrometry.

Unit 4 Electrochemical and Thermo Analytical Method

Cyclic Voltammetry, coulometry and amperometry-principle and applications.Thermal Characterization techniques, Principle and applications of Differential Thermal Analysis (DTA), Differentials Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) Thermometric titration.

Unit 5 Chromatographic Methods

Classification – techniques and applications in column, size-exclusion, ion exchange, paper and thin layer chromatography. Gas chromatography and high performance liquid chromatography (HPLC) – principle, equipment design, sample injection system, columns, detectors and applications.

Pedagogy

Class Room Lectures, Power Point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Case Study.

Text Books

- 1. Skoog D. A, and West D. M., (1982), "*Fundamentals of Analytical Chemistry*", Old Reinhord & Winston, Publication, 4th Edition.
- 2. Sharma B. K. (2005), "*Instrumental methods of Chemical analysis*", Goel Publishing House, 4th Edition.
- 3. Gurdeep R., Chatwal, Sham K. Anand, (1979), "Instrumental Methods of Chemical Analysis", Himalayan Publication.

15 Hours

15 Hours

15 Hours

15 Hours

Reference Books

- 1. F. W. Fifield, D. Kealey, (2000), "*Principles and Practice of Analytical Chemistry*", 5thEdition, Blackwell Sciences Ltd,
- 2. Willard Merrit, (1986), "Dean and Settle, Instrumental methods of analysis", 6thEdition, CBS Publ.
- 3. A. I. Vogel, (1982), "*Textbook of Qualitative Inorganic Analysis*", 3rdEdition, ELBS, 1976 OldReinhord & Winston, Publication.

E-Resources

- Dictionary of Analytical Reagents.
- Combined Chemical Dictionary.
- Annual Review of Analytical Chemistry
- ChemSpider
- PubChem

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Apply the results of the quantitative and qualitative measurements and also make use of precipitation techniques.
CO2	Solve the verification strategy in the error analysis
CO3	Compare the various instrumental techniques and distinguish its applications.
CO4	Examine the various electro and thermo analytical techniques.
CO5	Evaluate the quantitative analysis by using different chromatographic methods

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	0	3	0	3
CO2	0	3	3	0	3	0
CO3	2	0	2	0	2	2
CO4	0	2	0	3	3	0
CO5	2	3	3	0	2	3

1 - Low, 2 - Medium & 3- High

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units COs		K – Level	MCQs		Either/or Choice	Open Choice
			No. of	K-Level	No. of	No. of
			Questions K-Level		Questions	Questions
1	CO1	Up to K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
3	CO3	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
4	CO4	Up to K4	2	K1 & K2	2(K3&K3)	1(K4)
5	CO5	Up to K4	2	K1 & K2	2(K4&K4)	1(K4)
No of Q	No of Questions to be asked		10		10	5
No of Questions to be		10		5	3	
answered						
Marks fo	Marks for each Question		1		4	10
Total M	arks for e	each Section	10		20	30

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	8	10	23	23%	23%
K3	-	24	20	44	44%	44%
K4	-	8	20	28	28%	28%
Total Marks	10	40	50	100	100%	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Description	Hours	Mode
	a) Theoretical basis of quantitat	ive	Chalk and talk,
	inorganic analysis-common ic	on effect	Power Point
	solubility product, effect of ac	cid,	presentation,
	temperature and solvent upon		Group Discussion
	solubility of a precipitate.	5	
	b) Formation and treatment of		
	precipitates-co precipitation a		
I	precipitation. Precipitation fro		
	homogeneous solution. Specia	fic and 5	
	selective precipitants.		
	c) Principles of acid-base, oxida	tion-	
	reduction, precipitation and		
	complexometric titrations-ind		
	used in such titrations. Uses o	0	
	reagents in inorganic quantita	tive and	
	qualitative analysis.		
	a) Errors in chemical analysis –	e	Chalk and talk,
	terms: mean, median, accurac	ey and	Power Point
	precision		presentation
II	b) Classification of errors: Syste		
	errors and random errors. Imp	proving	
	accuracy of analysis	-	
	c) Mean, standard deviation and	-	
	Comparison of results – Least	t square,	
	T-test, F-test.		
	a) Colorimetry: Theoretical and	-	Chalk and talk,
	aspects of colorimetric analys	is. Flame	Power Point
	emission		presentation
	b) Principle and applications of	atomic 3	
	absorption spectroscopy.	2	
III	c) Types of atomic spectroscopy		
	emission methods – absorptio		
	methods – fluorescence method		
	d) Flame atomizers – Electro the		
	atomizers –Advantages of ato absorption spectrometry.		
	absorption spectromeny.		

	a) Cyclic Voltammetry, coulometry and	5	Chalk and talk,
	amperometry		Power Point
	b) Thermal Characterization techniques,	5	presentation
IV	Differential Thermal Analysis (DTA),		
	c) Differentials Scanning Calorimetry	5	
	(DSC) and Thermogravimetric		
	Analysis (TGA) Thermometric		
	titration.		
	a) Principle, equipment design, sample	5	Chalk and talk,
	injection system, columns, detectors		Power Point
	and applications.		presentation,
V	b) Column, size-exclusion, ion exchange,	5	•
	paper and thin layer chromatography.		
	c) Gas chromatography and high	5	
	performance liquid chromatography		
	(HPLC)		
Course De	signed by 1. Mr.S.Philip Arockiaraj	2. Mrs	.M.Shanmugapriya

Programme	M.Sc	Programme Code	РСН			
Course Code	20PCHC1P	Number of Hours/Cycle	10			
Semester	Ι	Max. Marks	100			
Part	III	Credit	5			
		Core Practical I				
Course Title Organic Chemistry Practical						
Cognitive Level	Up to K4					

To utilize the qualitative analysis of an organic mixture and to Estimate the organic compounds

Separation of Mixtures

- Separation of organic mixtures
- Elemental analysis
- Functional group(s) identification
- Preparation of derivatives
- The physical constants are to be reported
- Analysis with minimum one Confirmation tests for each group.

Volumetric analysis

- Estimation of phenol/aniline
- Estimation of glucose (Bertrand's method)
- Estimation of glucose (Lane and Eynon method)
- Estimation of ketone
- Estimation of formaldehyde/carbonyl compounds

Course Outcomes

On successful completion of the course, the students will be able to

CO1	Analyze the solubility nature of organic substances of different functional group.
CO2	Familiarize the test involving identification of special elements.
CO3	Analyze the separation of mixtures. To familiarize the systematic producers organic substances analysis.
CO4	Identify the various functional groups.
CO5	Examine the various Estimation.

Pedagogy

Demonstration, Experience Sharing, Laboratory experiments/teaching aids, Self-learning such as use of NPTEL materials and internets, Simulation.

Text Books

- 1. Gnanapragasam N.S, Ramamurthy G., (2010), "Organic Chemistry Lab Manual", S.Vishwanath Printers & Publishers Pvt. Ltd., Chennai,.
- 1. Day & Underwood, (2004), "*Quantitative Analysis*", Prentice Hall of India Pvt. Ltd., New Delhi. 6th Edition,

Reference Books

- 1. Arthur Vogel I., Elementary, (1989), "*Practical Organic Chemistry* (Part 1, 2 and 3)", CBS Publishers and Distributors, New Delhi,5th Edition.
- 2. Leonard J, Lygo B, Procter G.(2004), "*Advanced Practical Organic Chemistry*", Stanley Thornes (Publishers) Ltd., 1st Indian Edition.

E-Resources

- International Union of Pure and Applied Chemistry.
- Organic syntheses.
- Science of synthesis.
- Annual Review of Organic Chemistry.
- Nature Organic Chemistry.

Internal: 40 Marks and External 60 Marks: 6 Hours Practical

Course Designed by: 1. Dr.A.Pandiarajan 2. Dr.M.S.Dheenadayalan

Programme	M.Sc Chemistry	Programme Code	РСН
Course Code	20PCHC21	Number of Hours/Cycle	5
Semester	II	Max. Marks	100
Part	III	Credit	5
	Cor	re Course V	
Course	Organic Chemistry – II		
Cognitive Le	vel Up to K4		

To understand the concepts of Stereochemistry and to learn the basics and applications of Stereochemistry, conformational analysis, the principles of Green chemistry. To acquire basic knowledge about the heterocyclic chemistry involving in natural Products.

Unit 1 Stereochemistry-I

15 Hours

15 Hours

Stereoisomerism – Chirality and symmetry – Enantiomers and diastereomers. Projection formulae -- Wedge, Fischer, Sawhorse and Newmann. Optical isomerism due to centre of chirality. Erythro and threo nomenclature. Configuration – determination of configuration. Cahn Ingold and Prelog system of designation of configuration. Geometrical isomerism:E-Z nomenclature – determination of configuration of geometrical isomers using physical and chemical methods – stereoisomerism in monocyclic compounds [upto six membered ring].

Unit 2 Streochemisty-II

Prochirality and, prosteroisomerism, enantiotopic and diasterotopic ligands and faces and their nomenclature pro -R and pro-S Re and Si faces. Stereospecific and stereoselective reaction. Asymmetric synthesis Cram and Prolog rules. Optical isomers due axial chriality – biphenyls allenes and spiranes. Molecules with planar chirality – paracyclophanes, trans cyclooctene, ansacompounds .

Unit 3 Conformational Analysis

Configurations and conformations – conformations of ethane and n- butaneconformation analysis – stereoelectronic and steric factors- conformation of simple acyclic compounds -conformation of monosubstituted and disubstituted cyclohexanesconformational free energy – Curtin Hammett principle Quantitative treatment of mobile system– Eliel –Ro equation – conformations and reactivity of cyclohexamonesconformational analysis of aldohexopyranoses.

Unit 4 Green Chemistry

Principles of green chemistry – planning a green synthesis in a laboratory – general interest for solvent free processes – solvent free techniques – Microwave synthesis: Introduction and Characteristics of microwave heating – interaction of microwave radiation with the material – difference between conventional heating and microwave heating. Dielectric Polarization – diaPolar Polarization – applications and advantages of microwave heating over conventional heating.

Unit 5 Steroids

Steroids – Basic skeleton – Isolation – Structure determination – Structure of cholesterol, Bile acids, Androsterone, Testosterone, Estrone, Progesterone. Prostaglandins - General study of prostaglandins - Structures.

Pedagogy

Lecture by use of boards, LCD projectors, Assignments, Seminars, Mini projects, Self- learning such as use of NPTEL materials and internets, Simulation. **Text Book**

- 1. 1.Jain M.K, Sharma S.C, (2017), Golden Jubilee Yr. Revised Edition"*Modern* Organic Chemistry", Vishal Publishing Co, JALANDHAR 144 008 (PB.) INDIA
- 2. Renuga S., 2017, Golden Jubilee Yr. Revised Ed. "Name Reactions and Reagents in Organic synthesis", Vishal Publishing Co, JALANDHAR 144 008 (PB) INDIA

15 Hours

15 Hours

References

- 1. Jerry March, John Wiley & Sons, (2015), "Advanced Organic Chemistry", 7th Edition.
- 2. Gould E.S, (1965), "*Mechanism and structure in Organic Chemistry*", Henry Holt & Co., New York.
- 3. Finar I.L., (2002), "Organic Chemistry, Vol.1 and 2". ELBS, 5th, 6th Edition.

E-Resources

- Annual Review of Organic Chemistry
- Nature Organic Chemistry
- Dictionary of organic compounds .
- Dictionary of natural products
- Dictionary of organic compounds .

Course Outcomes

On successful completion of the course, the students will be able to

CO1	Distinguish the isomerism of the compounds
CO2	Solve the configuration of the organic compounds
CO3	Classify the structural features of the organic molecules
CO4	Importance of sustainable chemistry
CO5	Make use of various types of steroids.

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	-	2	3	-	2	-
CO2	2	2	-	3	3	2
CO3	2	-	3	-	-	-
CO4	-	3	3	2	3	2
CO5	2	3	-	-	2	-

1 - Low, 2 - Medium & 3- High

Articulation Mapping - K Levels with Course Outcomes (COs)

		PF-		ction A	Section B	Section C
			MCQs		Either/or Choice	Open Choice
Units	Cos	K – Level	No. of Quest ions K-Level		No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
3	CO3	Up to K3	2	K1 & K2	2(K2&K2)	1(K3)
4	CO4	Up to K4	2	K1 & K2	2(K2&K2)	1(K4)
5	CO5	Up to K4	2	K1 & K2	2(K4&K4)	1(K4)
No of Questions to be asked		10		10	5	
No of Questions to be answered		10		4	3	
Marks for each Question		1		5	10	
Total Ma	arks for ea	ch Section	10		20	30

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 - Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or Choice)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	24	10	39	39%	39%
K3	-	8	20	28	28%	28%
K4	-	8	20	28	28%	28%
Total Marks	10	40	50	100	100%	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Description	Hours	Mode
	Stereoisomerism – Chirality and symmetry –	4	Chalk and talk,
	Enantiomers and diastereomers.		Power Point
	Projection formulae Wedge, Fischer,	3	presentation
	Sawhorse and Newmann. Optical isomerism		
	due to centre of chirality. Erythro and threo		
	nomenclature.		
I	Configuration – determination of	5	
1	configuration. Cahn Ingold and Prelog		
	system of designation of configuration.		
	Geometrical isomerism:E-Z nomenclature -		
	determination of configuration of		
	geometrical isomers using physical and		
	chemical methods		
	stereoisomerism in monocyclic compounds	3	
	[upto six membered ring].		
	Prochirality and, prosteroisomerism,	4	Chalk and talk,
	enantiotopic ligands, diasterotopic ligands	4	Power Point
	enantiotopic faces, diasterotopic faces and		presentation
	their nomenclature pro -R, pro-S - Re and Si	3	_
	faces.		
II	Stereospecific and stereoselective reaction.		
11	Asymmetric synthesis Cram and Prolog	5	
	rules.		
	Optical isomers due axial chriality –		
	biphenyls allenes and spiranes. Molecules		
	with planar chirality – paracyclophanes,	3	
	trans cyclooctene, ansacompounds .		
			<u> </u>
	Configurations and conformations –	3	Chalk and talk,
	conformations of ethane		Power Point
	n- butane- conformation analysis –	3	presentation
	stereoelectronic and steric factors-		4
	conformation of simple acyclic compounds -		
III	conformation of monosubstituted and	3	
	disubstituted cyclohexanes		4
	conformational free energy – Curtin	2	
	Hammett principle Quantitative treatment of	3	
	mobile system		4
	Eliel –Ro equation – conformations and	3	
	reactivity of cyclohexamones-	-	

	conformational analysis of		
	aldohexopyranoses.		
	Principles of green chemistry – planning a	3	Chalk and talk,
	green synthesis in a laboratory		Power Point
	general interest for solvent free processes –	3	presentation,
	solvent free techniques		Group
	Microwave synthesis: Introduction and	3	Discussion
IV	Characteristics of microwave heating –		
IV	interaction of microwave radiation with the		
	material		
	Difference between conventional heating	3	
	and microwave heating. Dielectric		
	Polarization – diaPolar Polarization		
	Applications and advantages of microwave	3	
	heating over conventional heating.		
	Steroids – Basic skeleton – Isolation	5	Chalk and talk,
	Structure determination – Structure of		Power Point
X 7	cholesterol,		presentation.
V	Bile acids, Androsterone,	3	
	Testosterone, Estrone, Progesterone.	4	
	Prostaglandins - General study of	3	
	prostaglandins - Structures.		
ourse Desig	gned by 1. Dr.A.Pandiarajan 2. Dr.I	M.S.Dhe	enadayalan

Programme	M.Sc Chemistry	Programme Code	РСН			
Course Code	20PCHC22	Number of Hours/Cycle	5			
Semester	II	Max. Marks	100			
Part	III	Credit	5			
	Co	re Course VI				
Course Title	Course Title Inorganic Chemistry – II					
Cognitive level Up to K4						

The Preamble of the course is to develop an understanding of the chemistry of metals complexes and various reactions of organometallic chemistry.

Unit 1 Organo Metallic Chemistry-I

Nomenclature of organometallic compounds -Definition -Classificatin of ligands on the basic of the number of electrons contributed by the ligand for the metal –carbon bond – Inert gas rule or 18 electron rule -Counting of effectives numbers of electrons-Basis for the 18 electron rule-Explanation for exceptions to the 18- electron rule.

Unit 2- Organometallic Chemistry -II

Synthesis, Structure and Bonding-Poly nuclear carbonyls --nitrosyl-dinitrogen complexes -metal carbenes-carbynes-alkynes-alkynes-allyl complexes-ferrocene-uses of organo metallic compounds . Reaction of organometallic complexes

Mechanism of substitution reaction in carbonyl complexes -ligand cone angles -Mechanism oxidative addition reductive elimination reactions and insertion reaction.

Unit 3- Organo Metallic Chemistry-III

Reactivity and Catalysis- Hydrogenation of olefins(Wilkinson's Catalyst)hydroformylation of olefins using cobalt or rhodium catalysts(The oxo Process)-oxidation of olefins to aldehydes and ketones (Wacker's Process)-Polymerization of olefins(Zeiglar-Natta Catalyst)-Cyclooligomerization of acetylenes (Reppe Wilke's catalysts).

Unit 4- Solid State-I

Structure of solids-Crystalline and Amorphous solids-size and shape of crystals space lattice and unit cell-Types of crystals -Structure of diamond-Close packing of identical solid sphere -Limiting radius ratio-radius ratio rule and shape of ionic crystal-structure of NaCl-ZnS crystals (Zinc blende and Wurtzite Structure)-CsCl crystal –TiO₂ Crystal(Rutile).

Unit 5- Solid State-II

Crystal Defects-Defects-Structures of crystals -schottky defect -Frenkel defect -Metal excess defects-Metal deficiency defects-Thermal defects-Band theory, Hall Effect-Semiconductors-types of Semiconductors-Photovoltoic effect Semiconductors in solar energy conservation-Fabrication of transistors.

Pedagogy

Class Room Lectures, Power Point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Case Study.

Text Book

- 1. Puri B.R, Sharma L.R, and Pathania.M.S, (2019), "Advanced inorganic chemistry" -Vishal Publishing Co.
- 2. Shriver D.F, Atkins and Langford P.W. (2015), "Inorganic Chemistry", ELBS, Oxford University Press 6thEdition.
- 3. Soni P. L, Katyal M, (2010)."Text book of Inorganic Chemistry", Sultan Chand and Publishers, 20threvised Edition.

References

- 1. James HuheeyE, Ellen Keitler A and Richard KeitlerL, (1997),"Inorganic Chemistry", 4th Edition, Harper Collins College Publishers, New York.
- 2. AddisonW.E, Wiley, (1961), "Structural Principles of Inorganic Chemistry".
- 3. Wells.A.F, (1975), "Structursl Inorganic chemisty", 4th Edition Oxford, NewYork

E-Resources

15 Hours

15 Hours

15 Hours

15 Hours

- Aldrich Catalog: Organics and Inorganics for Chemical Synthesis.
- Annual Review of Inorganic Chemistry.
- Nature Inorganic Chemistry.
- Combined Chemical Dictionary.
- Dictionary of Inorganic and Organometallic Compounds .

Course Outcomes

On successful completion of the course, the students will be able to

CO1	Demonstrate the Nomenclature of organometallic compounds and 18 electrons rule.			
CO2	Examine the structure and reaction of organometallic complexes.			
CO3	Identify the catalytic reaction of organometallic compounds .			
CO4	Interpret the arrangement of ions in the structure from the various solid substances.			
CO5	Simplify the type of defects in metals, band theory and solid state reactions.			

Mapping of Course Outcomes with Programme Specific Outcomes						
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	0	2	2
CO2	3	0	2	2	2	2
CO3	3	2	3	0	2	3
CO4	2	0	3	0	2	0
CO5	2	2	3	0	2	2

1 – Low, 2 – Medium & 3- High

Articulation Mapping - K Levels with Course Outcomes (COs)

			Section	on A	Section B	Section C
Units	Cos	K – Level	MCQs		Either/or Choice	Open Choice
			No. of	K-Level	No. of	No. of
			Questions	K-Level	Questions	Questions
1	CO1	Up to K2	2	K1 & K2	2(K2& K2)	1(K2)
2	CO2	Up to K4	2	K1 & K2	2(K3& K3)	1(K4)
3	CO3	Up to K3	2	K1 & K2	2(K2& K2)	1(K3)
4	CO4	Up to K4	2	K1 & K2	2(K3& K3)	1(K4)
5	CO5	Up to K4	2	K1 & K2	2(K2& K2)	1(K4)
No of Q	uestions	to be asked	10		10	5
No of Q	No of Questions to be		10		5	3
answered						
Marks for each Question		1		4	10	
Total M	arks for e	each	10		20	30
Section						

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 - Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or Choice)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	24	10	39	39%	39%
K3	-	16	10	26	26%	26%
K4	-	-	30	30	30%	30%
Total Marks	10	40	50	100	100%	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Description	Hours	Mode
	Nomenclature of organometallic compounds – Definition	4	Chalk and talk, Power Point
Unit I	Classificatin of ligands on the basic of the number of electrons contributed by the ligand for the metal	3	presentation
	carbon bond –Inert gas rule or 18 electron rule	3	
	Counting of effectives numbers of electrons- Basis for the 18 electron rule -Explanation for exceptions to the 18- electron rule.	5	
	Synthesis, Structure and Bonding-PSOly nuclear carbonyls –nitrosyl-dinitrogen complexes	4	Chalk and talk, Power Point presentation
	metal carbenes-carbynes-alkenes-alkynes-allyl complexes	3	
Unit II	ferrocene-uses of organo metallic compounds .	3	
	Reaction of organometallic complexes Mechanism of substitution reaction in carbonyl complexes –ligand cone angles –Mechanism oxidative addition reductive elimination reactions reactions and insertion reaction.	5	
	Reactivity and Catalysis- Hydrogenation of olefins(Wilkinson's Catalyst)	3	Chalk and talk, Power Point
	hydroformylation of olefins using cobalt or rhodium catalysts(The oxo Process)	3	presentation
Unit III	oxidation of olefins to aldehydes and ketones (Wacker's Process)	3	
	PSOlymerization of olefins(Zeiglar-Natta Catalyst).	3	
	Cyclooligomerization of acetylenes(Reppe Wilke's catalysts).	3	
	Structure of solids-Crystalline and Amorphous solids-size and shape of crystals	4	Chalk and talk, Power Point
Unit IV	space lattice and unit cell-Types of crystals	4	presentation
	Structure of diamond-Close packing of identical solid sphere	3	

	Limiting radius ratio-radius ratio rule and shape of ionic crystal-structure of NaCl-ZnS crystals (Zinc blende and Wurtzite Structure)- CsCl crystal –TiO ₂ Crystal(Rutile).	4	
	Crystal Defects-Defects-Structures of crystals -schottky defect –Frenkel defect –Metal excess defects-Metal deficiency defects- Thermal defects	6	Chalk and talk, Power Point presentation, Group
Unit V	Band theory, Hall Effect	4	Discussion
	Semiconductors-types of Semiconductors- Photovoltoic effect Semiconductors in solar energy conservation	3	
	Fabrication of transistors.	2	

Course Designed by 1. Dr.M.S.Dheenadayalan

2. Mrs.A.Mariammal

Programme	M.Sc Chemistry	Programme Code	РСН		
Course Code	20PCHC23	Number of	5		
		Hours/Cycle			
Semester	II	Max. Marks	100		
Part	III	Credit	5		
	Core	e Course VII			
Course Title Physical Chemistry – II					
Cognitive level Up to K4					

This course provides the fundamentals of quantum chemistry and quantum Mechanics. This course also focus the concepts of quantum theory and electrochemistry. The Importance of ionics to electrochemistry and applications are discussed. Basic concepts of Phase rule and preparation of colloids and applications of micelles for various fields.

Unit 1- Quantum Chemistry-I

Exponential functions, vectors, matrices, determinants, and differentiation, Integration and differential equations. Introduction to quantum mechanics - Black body radiation, photoelectric effect, de Broglie equation and its verification, Interpretation of Bohr's Postulate in terms of wave nature of electron, Heisenberg Uncertainty principle; Setting up the Schrödinger equation, operators, algebra of operators, linear operators.

Unit 2- Quantum Chemistry-II

Setting up operators of linear momentum, angular momentum, kinetic energy and total energy of systems. Writing the Hamiltonian for H and He atoms-Eigen functions and eigen values, proving that linear momentum and angular momentum operators are linear, Hermitian operator and its properties, commutator theorem and its converse, Expansion theorem; Postulates of quantum mechanics.

Unit 3- Quantum Chemistry-III

The Schrödinger wave equation- particles in 1D and 3D boxes, harmonic oscillator, rigid rotator- Time dependent Schrödinger wave equation- Approximation methods -Perturbation Theory (first order and non-degenerate), The Variation method, linear variation principle. Helium - Hartree-Fock self-consistent field method.

Unit 4- Quantum Chemistry-IV

Approximate methods of solving the Schrödinger equation – The perturbation and variation methods - Angular momentum- spin orbit interaction - vector model of the atom term symbols - Pauli Exclusion Principle Slater determinant. Atomic Structure Calculation distortion of the box and Jahn-Teller effect, quantum numbers, zero-point energy, finite potential barrier - tunneling. **15 Hours**

Unit 5- Phase rule

Three component systems – representation by triangular diagrams, systems of three liquids – formation of one pair of partially miscible liquids, formation of two pairs of partially miscible liquids, formation of three pairs of partially miscible liquids – solid-liquid phases, Eutectic systems.

Pedagogy

Class Room Lectures, Power Point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Case Study.

Text Books

- 1. Puri B.R, Sharma L.R and Pathania M.S, "Principles of Physical Chemistry" (Millennium Edition.) Vishal Publishing Co. (2003).
- 2. N. Levine, "Quantum Chemistry" Ira; Prentice Hall; (2000).
- 3. D.A. McQuarrie, "Quantum chemistry", University Science Books, Mil Valley California (1983).

Reference Books

1. Atkins P.W (1986), "Molecular Quantum Mechanics", 2nd Edition, Oxford University

15 Hours

15 Hours

15 Hours

Press.

- 2. Chandra A.K (1998), "Introductory Quantum Chemistry", 3rd Edition, Tata McGraw Hill Publishing Co., New Delhi.
- 3. Hanna M.W (1969), *Quantum Mechanics in Chemistry*, 2nd Edition, The Benjamin Cummings Publishing Co., London.

E-Resources

- Lange's Handbook of Chemistry.
- Nature Physical Chemistry.
- Annual Review of Physical Chemistry.
- Smithsonian Physical Tables.
- Hawley's Condensed Chemical Dictionary.

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Recall Fundamentals of quantum chemistry
CO2	Apply Basic Mathematics to Quantum Chemistry
CO3	Analyze and distinguish Quantum theory with classical theory
CO4	Summarizing the Equations and its verifications and conclude the answers
CO5	Compare and discover the fundamentals of Phase rule and examine colloids and micelles

Mapping of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	-	2	2	-
CO2	2	-	2	2	-	2
CO3	-	3	3	2	-	2
CO4	2	-	3	-	3	
CO5	2	2	3	2	2	2

1 - Low, 2 - Medium & 3- High

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units	Cos	K – Level	МС	CQs	Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Up to K2	2	K1 & K2	2(K2&K2)	1(K2)
3	CO3	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)
4	CO4	Up to K4	2	K1 & K2	2(K3&K3)	1(K4)
5	CO5	Up to K4	2	K1 & K2	2(K4&K4)	1(K3)
No of Q	No of Questions to be asked		10		10	5
No of Questions to be			10		5	3
answered						
Marks for each Question			1		4	10
Total Ma	arks for e	ach Section	10		20	30

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 - Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or Questions)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	16	20	41	41%	41%
K3	-	16	20	36	36%	36%
K4	-	8	10	18	18%	18%
Total Marks	10	40	50	100	100%	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Description	Hours	Mode
	Exponential functions, vectors, matrices,	4	Chalk and
	determinants, and differentiation		talk, Power
	Integration and differential equations.		Point
	Introduction to quantum mechanics - Black body	3	presentation
Unit I	radiation		-
C III C I	photoelectric effect, de Broglie equation and its		
	verification, Interpretation of Bohr's Postulate in	5	
	terms of wave nature of electron, Heisenberg	C	
	Uncertainty principle;		-
	Setting up the Schrödinger equation, operators,	3	
	algebra of operators, linear operators.		
	Setting up operators of linear momentum,	4	Chalk and
	angular momentum	-	talk, Power
	kinetic energy and total energy of systems.		Point .
	Writing the Hamiltonian for H and He atoms-	4	presentation
Unit II	Eigen functions and eigen values		
	proving that linear momentum and angular		
	momentum operators are linear, Hermitian	5	
	operator and its properties, commutator theorem	5	
	and its converse		
	Expansion theorem; Postulates of quantum	2	
	mechanics.	2	
	The Schrödinger wave equation- particles in 1D	4	Chalk and
	and 3D boxes		talk, Power Point presentation, Group
	harmonic oscillator, rigid rotator- Time	4	
Unit III	dependent Schrödinger wave equation		
	Approximation methods - Perturbation Theory	3	
	(first order and non-degenerate),	-	Discussion.
	The Variation method, linear variation principle,		
	Helium - Hartree-Fock self-consistent field	4	
	method.		C1 11 1
	Approximate methods of solving the Schrodinger	4	Chalk and
	equation The next relation and registring methods		talk, Power
	The perturbation and variation methods –	3	Point presentation
Unit IV	Angular momentum– spin orbit interaction vector model of the atom – term symbols - Pauli		presentation
	Exclusion Principle Slater determinant.	3	
	Atomic Structure Calculation - distortion of the		1
	box and Jahn-Teller effect, quantum numbers,	5	
	oox and sum rener erreet, quantum numbers,		

	zero-Point energy, finite Potential barrier – tunneling.		
	Three component systems – representation by triangular diagrams	4	Chalk and talk, Power
Unit V	systems of three liquids – formation of one pair of partially miscible liquids	3	Point presentation.
	formation of two pairs of partially miscible liquids, formation of three pairs of partially miscible liquids	5	
	solid-liquid phases, Eutectic systems.	3	

Course Designed by 1. Dr.S.K.Selvaraj

2. Dr.S.Ignatius Arockiam

Programme	M.Sc Chemistry	Programme Code		РСН	
Course Code	20PCHC24	Number	of	5	
		Hours/Cycle			
Semester	Π	Max. Marks		100	
Part	III	Credit		5	
Core Course VIII					
Course Title	Analytical Method - II				
Cognitive Level Up to K4					

This course deals with the basic introduction about chromatography and to learn the different chromatographic Techniques like column, paper, thin layer, Gas Liquid, High Performance Liquid and Ion Exchange chromatographic Techniques and discussed its applications.

Unit I Paper Chromatography

Principle, papers as a chromatographic medium, modified papers, solvent systems, mechanism of paper chromatography, experimental technique, different development methods-ascending, descending, horizontal, circular spreading, multiple development, two dimensional development, reverse phase paper chromatographic technique-visualization and evaluation of chromatograms, applications.

Unit II Thin Layer Chromatography

Thin layer chromatography: principle, chromatographic media-coating materials, applications, activation of adsorbent, sample development, solvent systems, development of chromatoplate, types of development, visualization methods, documentation, applications in the separation.

Unit III Gas Liquid Chromatography

Gas-liquid Chromatography, Principles, Retention Volumes, Instrumentation, Carrier Gas, Columns, Stationary Phase, types of Detectors, Thermal Conductivity, Flame Ionization, Electron Capture, Retention time, Application of G.L.C.

Unit IV High Performance Liquid chromatography

High Performance Liquid chromatography: Scope, Column efficiency, Instrumentation, Pumping Systems, Columns, Column packing, Detectors, Applications. Ion exchange and gel – permeation chromatography. Application of HPLC.

Unit V Ion Exchange Chromatography

Ion Exchange: principles of ion-exchange systems, synthetic ion-exchange resins, properties of anion and cation exchange resins, ion-exchange mechanism, ion exchange equilibria, selectivity, ion-exchange capacity, applications of ion exchangers in different fields.

Ion exchange chromatography: Principle, Equipment, Application Specifically Separations of Lanthanides, Actinides, amino acids.

Pedagogy

Class Room Lectures, Power Point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Case Study.

Text Books

- 1. J. Huheey, (1983), "Inorganic Chemistry", Harper and Collins, NY.4th Edition.
- 2. B.K. Sharma, (2000), "*Instrumental methods of chemical analysis*", Goel publishing House, 19thEdition.
- 3. F.A. Cotton and G. Wilkinson,(1998), "*Advanced Inorganic Chemistry*"- A Comprehensive Text, John Wiley and Sons, 5thEdition.

Reference Books

- 1. H.J. Arnikar, 1987, Nuclear Chemistry, Wiley Eastern Co. II Edition.
- 2. M.C. Day and J. Selbin, 1974, *Theoretical Inorganic Chemistry*, Van Nostrand Co., New York.

15 Hours

15 Hours

15 Hours

15 Hours

3. D.F. Shrivers, P.W. Atkins and C.H. Langfor, 1990, *Inorganic Chemistry*, Freeman, New York.

E-Resources:

- Encyclopedia of Industrial Chemistry.
- Annual Review of Analytical Chemistry.
- Substance searching.
- Reaction searching.
- ChemSpider.

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Apply the basic concepts of Paper Chromatography into the chemical industry.
CO2	Organize the basic concepts of Thin layer Chromatography and to apply various field.
CO3	Examine the gas liquid chromatography and to develop the various fields.
CO4	Simplify and Analyze the HPLC and utilize in to the research sides.
CO	Investigate the ion exchange chromatography and to apply various field.

Manning of Course Outcomes with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	0	3	3	0
CO2	2	2	3	0	3	0
CO3	0	3	0	2	0	3
CO4	2	0	3	0	3	0
CO5	2	3	0	2	3	2

1 - Low, 2 - Medium & 3- High

Articulation Mapping - K Levels with Course Outcomes (COs)

			Section	on A	Section B	Section C	
Units	COs	K – Level	MCQs		Either/or Choice	Open Choice	
		Level	No. of Questions K-Level		No. of Questions	No. of Questions	
1	CO1	Up to K3	2	K1 & K2	2(K2&K2)	1(K2)	
2	CO2	Up to K3	2	K1 & K2	2(K3&K3)	1(K3)	
3	CO3	Up to k3	2	K1 & K2	2(K3&K3)	1(K3)	
4	CO4	Up to K4	2	K1 & K2	2(K3&K3)	1(K4)	
5	CO5	Up to K4	2	K1 & K2	2(K4&K4)	1(K4)	
No of Q	uestions t	o be asked	10		10	5	
No of Questions to be		10		5	3		
answered							
Marks for each Question			1		4	10	
Total Marks for each			10		20	30	
Section							

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented

K4 - Examining, analyzing, presentation and make inferences with evidences

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or Choice)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	8	10	23	23%	23%
К3	-	24	20	44	44%	44%
K4	-	8	20	28	28%	28%
Total Marks	10	40	50	100	100%	100%

Unit	Lesson Plan Description	Hours	Mode
Umt	a) Principle, papers as a	5	Chalk and talk, Power
		5	
	chromatographic medium, modified		Point presentation,
	papers, solvent systems	-	Group Discussion
	b) Mechanism of paper chromatography,	5	
Unit I	experimental technique, different		
	development methods-ascending,		
	descending, horizontal, circular		
	spreading,		
	c) Multiple development, two	5	
	dimensional development, reverse		
	phase paper chromatographic		
	technique-visualization and evaluation		
	of chromatograms, applications.		
	a) Thin layer chromatography: principle,	5	Chalk and talk, Power
	chromatographic media-coating	5	Point presentation,
	materials, applications.		Group Discussion
Unit II	b) Activation of adsorbent, sample	5	Oroup Discussion
Unit II	development, solvent systems,	5	
	development of chromatoplate.		
	· ·	F	
	c) Types of development, visualization	5	
	methods, documentation, applications		
	in the separation.		
	a) Principles, Retention Volumes,	5	Chalk and talk, Power
	Instrumentation.	_	Point presentation,
Unit III	b) Gas-liquid Chromatography, Carrier	5	Group Discussion
	Gas, Columns, Stationary Phase		
	c) Types of Detectors, Thermal	5	
	Conductivity, Flame Ionization,		
	Electron Capture, Retention time,		
	Application of G.L.C.		
	a) High Performance Liquid	5	Chalk and talk, Power
	chromatography: Scope, Column		Point presentation,
	efficiency,		Group Discussion
	b) Instrumentation, Pumping Systems,	5	
Unit IV	Columns, Column packing, Detectors,	C	
	Applications.		
	c) Ion exchange and gel – permeation	5	
	chromatography. Application of	5	
	HPLC.		
	a) Ion Exchange: principles of ion-	5	Chalk and talk, Power
		5	
	exchange systems, synthetic ion-		Point presentation,
	exchange resins, properties of anion		Group Discussion
	and cation exchange resins.	~	
.	b) Ion-exchange mechanism, ion	5	
Unit V	exchange equilibria, selectivity, ion-		
	exchange capacity, applications of ion		
	exchangers in different fields.		
	c) Ion exchange chromatography:	5	
	Principle, Equipment, Application		
	Specifically Separations of		
	Lanthanides, Actinides, amino acids.		
D	signed by 1. Mr.S.Philip Arockiaraj	2 M	rs.M.Shanmugapriya

Programme	M.Sc Chemistry	Programme Code	РСН			
Course	20PCHC2P	Number of	· 10			
Code		Hours/Cycle				
Semester	II	Max. Marks	100			
Part	III	Credit	5			
Core Practical II						
Course Title Inorganic Chemistry Practical						

Preamble

This is a laboratory course that deals with the principles and methods of qualitative analysis of common and less common cations present in a mixture and various analytical methods of quantitative analysis of cations present in a mixture.

Component 1

Theoretical principles

1. Classification of cations into analytical groups and classification with in each analytical group.

2. Confirmatory and spot test for cations – Chemistry of reactions. Semimicro qualitative analysis mixtures of four simple salts containing two common cations and two less common cations with non-interfering anions.

Common cations of

Group I : Pb and Hg;

Group II : Hg, Cu, Cd, Bi, Sb, As, and Sn;

Group III : Al, Fe, and Cr;

Group IV : Mn, Zn, Co, and Ni

Group V : Ca, Sr, and Ba

Group VI : Mg, K, and NH4

Less common cations of

Group I : W and Tl;

Group IA : Se and Te;

Group II : Mo;

Group III : Be, Tl, Ce, Ti, Th, Zr, V, and U;

GroupVI : Li - Systematic separation of cations into analytical groups followed by identification of individual cations.

Component 2

- 1. Estimation of Copper and Nickel by gravimetric method
- 2. Estimation of Copper and Zinc by gravimetric method
- 3. Estimation of Barium and Calcium by gravimetric method

Pedagogy

Demonstration, Experience Sharing, Laboratory experiments/teaching aids, Self-learning such as use of NPTEL materials and internets, Simulation.

Text Books

1. Ramanujam V.V, *Inorganic Semimicro qualitative analysis*, 3rd Edition, National Publishing company, (1974)

Reference Books

- 1. Arthur I.Vogel, *Elementary Practical Organic Chemistry (Part 1, 2 and 3)*, CBS Publishers and Distributors, New Delhi,5th Edition, (1989).
- 2. Mukhopadhyay R. & Chatlerjee P, "Advanced Practical Chemistry", Book & Allied (p) ltd (2007).
- 3. J.Men dham, R.C Denney, M.J.K Thomas Darid & J Bares, Vogels quantitative chemical analysis, 6th edition prentice hall (2000).

E-Resources

- Inorganic syntheses.
- Science of synthesis.

- Nature Inorganic Chemistry.
- Annual Review of Inorganic Chemistry
- International Union of Pure and Applied Chemistry.

Internal: 40 Marks and External 60 Marks - 6 Hours Practical

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Summarise the principle of distribution of common and less common cations in different groups
CO2	Demonstrate reactions for identification of cations
CO3	Identify the principle of methods of cation estimation
CO4	Develop analytical skill in the field of separation of cations from mixture.
CO5	Examine the principle of methods of cation estimation
~	

Course Designed by 1. Dr.A.Pandiarajan 2. Dr.M.S.Dheenadayalan

Programme	M.Sc Chemistry	Programme Code	РСН		I
Course Code	20PCHC31	Number of Hours / Cycle	4		
Semester	III	Max. Marks	100)
Part	III	Credit	4		
Core Course IX					
Course Title	Organic Che	Organic Chemistry III		Т	Р
Cognitive Level	К3		60		

Preamble

This course deals the concepts of various Spectroscopic techniques and its applications in organic molecules, Characterization of organic compounds by UV and IR, and also has advanced knowledge in NMR spectroscopy, to know the basic principles involved in mass spectrometry, to know the structure and synthesis of antibiotics.

Unit I	UV-Visible Spectroscopy and IR Spectroscopy	12 Hours			
		12 HOURS			
	Beer- Lambert Law, Effect of solvent on electronic transitions,				
	Fisher - Woodward rules for conjugated dienes and carbonyl				
	compounds, ultra violet spectra of aromatic and heterocyclic				
	compounds. Applications of UV- visible spectroscopy in organic				
	chemistry.				
	Molecular vibrations- factors influencing vibrational frequencies,				
	Applications of IR spectroscopy to organic compounds - group				
	frequency concept- hydrogen bonding- effect of inductive and				
	mesomeric effects.				
Unit II	Nuclear Magnetic Resonance Spectroscopy (¹ H NMR)	12 Hours			
	Origin of NMR spectra, chemical shift, spin coupling, coupling				
	constant, spin decoupling, shift reagents, Simplification of complex				
	spectra, nuclear magnetic double resonance, Karplus equation, Spin				
	systems (AX, AX2, AX3), Rate processes, Nuclear Overhauser				
	effect (NOE).				
Unit III	III Nuclear Magnetic Resonance Spectroscopy (¹³ C NMR)				
	Chemical shifts, Effect of substituent on chemical shifts, Off-				
	resonance decoupling, Two dimensional NMR spectroscopy -				
	COSY, HETCOR, ROESY, NOESY, and TOCSY, Inadequate				
	techniques. Pulse sequences of various 2D NMR spectroscopic				
	techniques.				
Unit IV	Mass Spectroscopy and Chiro Optical Methods	12 Hours			
	Principle – type of ions, fragmentation of different functional				
	groups, molecular ion peak, isotopic peaks, metastable peak,				
	Nitrogen rule, McLafferty rearrangement, Retro-Diels-Alder				
	reaction.				
	ORD and CD, Principle, Cotton effect, type of ORD curves, α-				
	haloketone rule, Octant rule, comparison of ORD and CD.				
Unit V	Oxidation And Reduction	12 Hours			
	Oxidation reaction involving - SeO ₂ , OsO ₄ , Lead tetra acetate,				
	Oppenaver oxidation. Reduction reaction involving - sodium				
	borohydride, Brich reduction, Meerwein Pondorf-Verely reduction –				
	Wolf-krishner reduction, Huang-Minlon modification,				
	Hydroboration. Reagents in organic synthesis – Merrified resin,				
	phase transfer catalysts, Peterson's synthesis, Baker yeast.				
		1			

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Book

- 1. Jeg Mohan, (2014), "Organic Spectroscopy Principles and Applications", Alpha Science International Ltd. Harrow, U.K. Second Edition.
- Banwell C.N, Mccash E.M, (2010), "Fundamentals of Molecular Spectroscopy", Tata 2. Mcgraw-Hill Publishing Company Ltd, New Delhi, Fourth Edition.
- 3. Kalsi P.S, (2016) "Spectroscopy of Organic Compounds", New Age International Publishers, New Delhi, 6th Edition.

Reference Books

- 1. Silverstein R.M, Webster F.X, Kiemle D.J, (2015), "Spectrometric identification of organic compounds", John Wiley & Sons, New Delhi. 6th Edition.
- Kemp W, (2017), "Organic Spectroscopy", ELBS London, 2nd Edition.
 Jerry March, John Wiley & Sons, 7th edn., 2015, Advanced Organic Chemistry,.

E-Resources

- https://en.wikipedia.org/wiki/Spectroscopy#
- https://www.youtube.com/watch?v=MW4PwJxxyt0 •
- https://www.youtube.com/watch?v=a2FgqSPGLSg •
- https://www.youtube.com/watch?v=H6 GgJN39vY
- https://www.cif.iastate.edu/mass-spec/ms-tutorial# •
- https://www.youtube.com/watch?v=dF51B7gRtcA

Course Outcomes

On successful completion of the course, the student will be able to

No.	Course Outcome
CO1	Elucidate the structure of organic compounds by using UV-Visible Spectroscopy
COI	& IR spectroscopy
CO2	Interpretation of the Nuclear Magnetic Resonance Spectroscopy (¹ H NMR)
CO3	Details of ¹³ C Nuclear Magnetic Resonance Spectroscopy
CO4	Explain fragmentation of different functional group in Mass spectroscopy
CO5	Inference the Mechanism of oxidation and reduction reaction

Mapping of Course Outcomes Mapping of Bloom's Taxonomy – Programme Outcome with Course Outcome

	PSO1	PSO 2	PSO3	PSO4	PSO5	PSO6
CO1	2	3	2	2	2	1
CO2	2	2	3	2	1	2
CO3	2	2	2	2	1	2
CO4	3	3	3	1	2	1
CO5	2	2	2	2	3	3

1. Low, 2. Medium & 3. High

			Section	on A	Section B	Section C
Units	COs	K – Level	МС	Qs	Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
2	CO2	Upto K3	2	K1 & K2	2(K3&K3)	1(K2)
3	CO3	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
4	CO4	Upto K3	2	K1 & K2	2(K3&K3)	1(K2)
5	CO5	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
No of Qu	No of Questions to be asked		10		10	5
No of Questions to be answered		10		5	3	
Marks for each Question			1		4	10
Total Ma	arks for ea	ch Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

 $K1-Remembering \ and \ recalling \ facts \ with \ specific \ answers$

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5	5%
K2	5	24	20	49	49	49%
K3	-	16	30	46	46	46%
Total Marks	10	40	50	100	100	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

	Lesson I Ian		
Unit I	UV-Visible Spectroscopy and IR Spectroscopy	12 Hours	Mode
	a) Beer- Lambert Law, Effect of solvent on		Chalk and talk,
	electronic transitions, Fisher- Woodward rules for	4	Power point
	conjugated dienes and carbonyl compounds.		presentation
	b) Ultra violet spectra of aromatic and		•
	heterocyclic compounds. Applications of UV-		
	visible spectroscopy in organic chemistry.	4	
	c) Molecular vibrations. Factors influencing		
	vibrational frequencies, Applications of IR		
	spectroscopy to organic compounds. Group	4	
	frequency concept- hydrogen bonding- effect of		
	inductive and mesomeric effects.		
Unit II	Nuclear Magnetic Resonance Spectroscopy (¹ H	12 Hours	Mode
	NMR)		
	a) Origin of NMR spectra, chemical shift, spin		Chalk and talk,
	coupling, coupling constant, Spin decoupling,	4	Power point
	shift reagents,		presentation
	b) Simplification of complex spectra, Nuclear	4	-
	magnetic double resonance, Karplus equation,		
	c) Spin systems (AX, AX2, AX3), Rate processes,	4	
	Nuclear Overhauser effect (NOE).		
	•		

Unit III	Nuclear Magnetic Resonance Spectroscopy (¹³ C NMR)	12 Hours	
	a) Chemical shifts, Effect of substituent on chemical shifts, Off-resonance decoupling,	4	Chalk and talk, Power point
	b) Two dimensional NMR spectroscopy - COSY, HETCOR, ROESY, NOESY, and TOCSY	4	presentation
	c) Inadequate techniques. Pulse sequences of various 2D NMR spectroscopic techniques.	4	
Unit IV	Mass Spectroscopy and Chiro Optical Methods	12 Hours	
	 a) Principle – type of ions, fragmentation of different functional groups, molecular ion peak b) Isotopic peaks, metastable peak, Nitrogen rule, 	4	Chalk and talk, Power point presentation,
	McLafferty rearrangement, Retro-Diels-Alder reaction.	4	Group Discussion
	c) ORD and CD, Principle, Cotton effect, type of ORD curves, α - haloketone rule, Octant rule, comparison of ORD and CD.	4	
Unit V	Oxidation And Reduction	12 Hours	
	 a) Oxidation reaction involving - SeO₂, OsO₄, Lead tetra acetate, Oppenaver oxidation. b) Paduation reaction involving codium 	4	Chalk and talk, Power point
	b) Reduction reaction involving – sodium borohydride, Brich reduction, Meerwein Pondorf- Verely reduction – Wolf-krishner reduction,	4	presentation, Group Discussion
	Huang-Minlon modification, Hydroboration. c) Reagents in organic synthesis – Merrified resin, phase transfer catalysts, Peterson's synthesis, Baker yeast.	4	

Course Designed by Dr.A.Pandiarajan and Dr.M.S.Dheenadayalan

Programme	M.Sc Chemistry	Programme Code	РСН		H
Course Code	20PCHC32	Number of Hours / Cycle		4	
Semester	III	Max. Marks	100		0
Part	III	Credit		4	
Core Course X					
Course Title	Inorganic Chemistr	Inorganic Chemistry III		Т	Р
Cognitive Level	K4	K4		-	-

Preamble

The course was enabled the students to Analyze the inorganic compounds using various spectroscopic techniques and to have the knowledge on understand the types of spectroscopy.

Unit I	Infrared Spectroscopy	12 Hours	
	Spectroscopy in the structural elucidation of simple molecules like		
	N_2O , ClF_3 , NO_3^- , ClO_4^- – effect of coordination on ligand vibrations		
	– uses of groups vibrations in the structural elucidation of metal		
	complexes of urea, thiourea, cyanide, thiocyanate, nitrate, sulphate		
	and dimethyl sulfoxide		
Unit II	NMR Spectroscopy	12 Hours	
	Examples for different spin systems – chemical shifts and coupling		
	constants (spin-spin coupling) involving different nuclei (¹ H, ¹⁹ F,		
	³¹ P, ¹³ C) interpretation and applications to inorganic compounds-		
	NMR spectra of P ₄ S ₃ ,H ₃ PO ₃ ,H ₃ PO ₂ and HPF ₂ . ¹⁹ F NMR spectra of		
	ClF_3 , BrF_3 and equimolar mixture of TiF_6 and TiF_4 in ethanol –		
	Effect of quadrupolar nuclei on the ¹ H NMR spectra, Satellite		
	spectra. Systems with chemical exchange - study of fluxional		
	behavior of molecules NMR of paramagnetic molecules – isotropic		
	shifts contact and pseudo-contact interactions - Lanthanide shift		
	reagents.		
Unit III	EPR Spectroscopy	12 Hours	
	Theory of EPR spectroscopy - Spin densities and McConnell		
	relationship –presentation of the spectrum-hyperfine splitting,		
	Applications of ESR to some simple systems such as CH_3p -		
	benzosemiquinone, Xe^{2+} - Factors affecting the magnitude of g and		
	A tensors in metal species - Zero-field splitting and Kramers		
	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and		
11: 4 1	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes	12 Hours	
Unit IV	 degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes Photoelectron spectroscopy (PES) 	12 Hours	
Unit IV	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization	12 Hours	
Unit IV	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's	12 Hours	
Unit IV	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's theorem – chemical shift – UPS – XPES of N2, O2 and HCL -	12 Hours	
Unit IV	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's theorem – chemical shift – UPS – XPES of N2, O2 and HCL – evaluation of vibrational constants from UPS – spin orbit coupling	12 Hours	
	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's theorem – chemical shift – UPS – XPES of N2, O2 and HCL - evaluation of vibrational constants from UPS – spin orbit coupling – Auger spectroscopy – Principle and its applications.		
Unit IV Unit V	 degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes Photoelectron spectroscopy (PES) Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's theorem – chemical shift – UPS – XPES of N₂, O₂ and HCL - evaluation of vibrational constants from UPS – spin orbit coupling – Auger spectroscopy – Principle and its applications. Mossbauer Spectroscopy 	12 Hours 12 Hours	
	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's theorem – chemical shift – UPS – XPES of N2, O2 and HCL - evaluation of vibrational constants from UPS – spin orbit coupling – Auger spectroscopy – Principle and its applications.Mossbauer SpectroscopyTheory - Mossbauer effect resonance absorption – Doppler effect –		
	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's theorem – chemical shift – UPS – XPES of N2, O2 and HCL - evaluation of vibrational constants from UPS – spin orbit coupling – Auger spectroscopy – Principle and its applications.Mossbauer SpectroscopyTheory - Mossbauer effect resonance absorption – Doppler effect – Doppler velocity – Experimental technique of measuring resonance		
	degeneracy – Spectra of VO(II), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexesPhotoelectron spectroscopy (PES)Theory – XPS. UV-PES – instrumentation evaluation of Ionization potential – Chemical identification of elements – Koopmann's theorem – chemical shift – UPS – XPES of N2, O2 and HCL - evaluation of vibrational constants from UPS – spin orbit coupling – Auger spectroscopy – Principle and its applications.Mossbauer SpectroscopyTheory - Mossbauer effect resonance absorption – Doppler effect –		

Class Room Lectures, Power point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Brain storming, Activity, Case Study

Text Book

- 1. R.S. Drago, Physical Methods in Inorganic Chemistry, 3rd Ed., Wiley Eastern Company
- 2. E.A.V. Ebsworth, Structural Methods in Inorganic Chemistry, 3rd Ed., ELBS, 1987.
- 3. J. E. Huheey, Ellen A. Keiter, Richard L. Keiter, 2004.Inorganic Chemistry, Pearson Education (Singapore) Pte. Ltd., IV Edn., Delhi.

Reference Books

- 1. R. S. Drago, Physical Methods in Chemistry, W. B. Saunders Company, 1992.
- 2. R. S. Drago, Physical Methods in Chemistry, Saunders Golden Sunburst, London, 1977
- 3. Khulbe KC, Matsuura T, Singh S, Lamarche G, Noh SH. Study on fouling of ultra filtration membrane by electron spin resonance. J Membr Sci 2000; 167:263e73.

E-Resources

- https://edu.rsc.org/resources/spectroscopy-in-a-suitcase-ir-students-resources/283.artcle
- http://mriquestion.com/who-discover-nmr.html
- https://en.m.wikipedia.org/wiki/Electron_Paramagnetic_Resonance
- https://chem.libretexts.org/Bookshelves/Inorganic_chemistry/
- https://en.m.wikipedia.org/wiki/M%C3%B6SSbauer_spectroscopy

Course Outcomes

After completion of this course, the students will be able to:

r	
CO1	Illustrate the structural elucidation of metal complexes and its uses.
CO2	Identify the different spin systems of NMR spectra involving different nuclei (¹ H, ¹⁹ F, ³¹ P, ¹³ C) interpretation and applications to inorganic compounds.
CO3	Construct the Theory of EPR spectroscopy to some simple systems of metal complexes and its Applications.
CO4	Classify the Theories of XPS, UV,PES its Principle, instrumentation evaluation of Ionization potential ,vibrational constants from UPS and its applications
CO5	Analyze the Experimental technique of measuring resonance absorption and application of Mossbauer spectroscopy in the study of iron complexes.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	1	3	2	2
CO2	2	2	2	3	2	3
CO3	2	3	2	2	3	2
CO4	3	2	2	2	2	2
CO5	2	2	1	2	1	2

1.Low, 2.Moderate & 3.High

		^	Section		Section B	Section C
Units	COs	K – Level	MCQs		Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Up to K3	2	K1&K2	2(K2&K2)	1(K3)
2	CO2	Up to K3	2	K1&K2	2(K3&K3)	1(K2)
3	CO3	Up to K3	2	K1&K2	2(K2&K2)	1(K3)
4	CO4	Up to K4	2	K1&K2	2(K3&K3)	1(K4)
5	CO5	Up to K4	2	K1&K2	2(K3&K3)	1(K4)
No of Questions to be asked		10		10	5	
No of Questions to be answered		10		5	3	
Marks fo	Marks for each Question		1		4	10
Total Ma	irks for eac	ch Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5	5%
K2	5	16	10	31	31	31%
K3	-	24	20	44	44	44%
K4	-	-	20	20	20	20%
Total Marks	10	40	50	100	100	100%

Distribution of Section - wise Marks with K Levels

	Lesson Plan		
Unit-I	Infrared Spectroscopy	12 Hours	MODE
	a) Spectroscopy in the structural elucidation of		Chalk and talk,
	simple molecules like N ₂ O, ClF ₃ .	2	Power point
	b) Spectroscopy in the structural elucidation of		presentation
	simple molecules like NO3, ClO4 effect of	2	
	coordination on ligand vibrations		
	c) Uses of groups vibrations in the structural	2	
	elucidation of metal complexes of urea, thiourea,		
	d) Uses of groups vibrations in the structural		
	elucidation of metal complexes of cyanide,	3	
	thiocyanate, nitrate		
	e) Uses of groups vibrations in the structural	3	
	elucidation of metal complexes of nitrate,		
	sulphate and dimethyl sulfoxide		
Unit-II	NMR Spectroscopy	12 Hours	
	a)Examples for different spin systems – chemical		Chalk and talk,
	shifts and coupling constants (spin-spin coupling)	3	Power point
	involving different nuclei (¹ H, ¹⁹ F, ³¹ P, ¹³ C)		presentation
	interpretation and applications to inorganic		
	compounds		

	quadruple splittingd) Application of Mossbauer spectroscopy in the study of iron complexes.e) Application of Mossbauer spectroscopy in the	2 3	
	c) isomer shift, magnetic hyperfine splitting,	2	
	absorption b) Doppler effect, Doppler velocity	2	presentation
	a) Theory Mossbauer effect resonance absorption, Experimental technique of measuring resonance	3	Chalk and talk, Power point
Unit-V	Mossbauer Spectroscopy	12 Hours	
	e) Spin orbit coupling, Auger spectroscopy Principle and its applications.	2	
	HCL d) Evaluation of vibrational constants from UPS	2	
	Koopmann's theorem c) Chemical shift $-UPS - XPES$ of N_2 , O_2 and	2 3	
	 a) Theory – XPS. UV - PES – instrumentation evaluation of Ionization potential b) Chemical identification of elements – 	3	Chalk and talk, Power point presentation
Unit -IV	Photoelectron spectroscopy (PES)	12 Hours	01 11 1 1
TI:4 TX7	e) Zero-field splitting and Kramers degeneracy, Spectra of Co(II), Ni(II) and Cu(II) complexes	3	
	d) Zero-field splitting and Kramers degeneracy, Spectra of VO(II), Mn(II), Fe(III),	2	
	tensors in metal species, Zerofield splitting and Kramers degeneracy	2	
	 b) Applications of ESR to some simple systems such as CH₃, <i>p</i>-benzosemiquinone, Xe²⁺ c) Factors affecting the magnitude of g and A 	2	
	a)Theory of EPR spectroscopy ,Spin densities and McConnell relationship, presentation of the spectrum-hyperfine splitting	3	Chalk and talk, Power point presentation
Unit-III	EPR Spectroscopy	12 Hours	
	e) Study of fluxional behavior of molecules NMR of paramagnetic molecules – isotropic shifts contact and pseudo-contact interactions – Lanthanide shift reagents.	3	
	spectra, Satellite spectra. Systems with chemical exchange	2	
	mixture of TiF_6 and TiF_4 in ethanol d) Effect of quadrupolar nuclei on the ¹ H NMR	2	
	b)NMR spectra of P ₄ S ₃ ,H ₃ PO ₃ ,H ₃ PO ₂ and HPF ₂ c) ¹⁹ F NMR spectra of ClF ₃ , BrF ₃ and equimolar	2 2	

Course designed by Dr.M.S.Dheenadayalan and Mrs.A.Mariammal

Programme	M.Sc Chemistry Programme Code			РСН	
Course Code	20PCHC33	Number of Hours / Cycle		4	
Semester	III	Max. Marks		100)
Part	III	Credit		4	
	Core C	ourse XI			
Course Title	Physical Chemistry III I			Т	Р
Cognitive Level	Up to K4		60	-	-

Preamble

This course brings forth various concepts of group theory and different principles of in it. It can provide the applications of group theory. The course provide discussed about various concepts instrumentations of spectroscopy in chemistry and application.

Unit I	Group Theory I	12 Hours
	Molecular symmetry elements and symmetry operations - vector	
	and matrix algebra - symmetry operations and transformation	
	matrices – Group – definition and properties of a group– symmetry	
	point groups- representation of a group – reducible and irreducible	
	representations-Great orthogonality theorem- characters -	
	construction of character tables- C_4V , C_2h and D_2d – Direct	
	product concept.	
Unit II	Group Theory II	12 Hours
	Symmetry of normal modes of vibration, application of group	
	theory to normal modes of vibrations and analysis - symmetry	
	properties of integrals – application for spectral selection rules of	
	vibration spectra. Symmetry of molecular orbital and symmetry	
	selection rule for electronic transitions in simple molecules like	
	ethylene, formaldehyde and benzene. Wave functions as the basis	
	of irreducible and delocalization energy for cyclopropenyl,	
	butadiene and benzene system.	
Unit III	Spectroscopy I	12 Hours
	Electromagnetic spectrum – Types of molecular energies –	
	Absorption and emission of radiation - Einstein's coefficient -	
	induces emission and absorption - Rotational spectra of rigid	
	diatomic molecules - isotope effect in rotational spectra -	
	Microwave spectrometer – Informations derives from rotational	
	spectra. Infrared spectroscopy – Vibrational energy of a diatomic	
	molecule – infrared selection rules – diatomic vibration rotator –	
	vibrations of polyatomic molecules - overtone, combination and	
	difference bands - concept of group frequencies - coupling	
	interaction- Fermi resonance Fourier transform infrared	
	spectroscopy.	
Unit IV	Spectroscopy II	12 Hours
	Raman spectroscopy – Theories of Raman scattering – Rotational	
	Raman spectra - Vibrational Raman spectra. Mutual exclusion	
	principle – Laser Raman spectra – Electronic spectra of diatomic	
	and polyatomic molecules- intensity of Vibrational electronic	
1	spectra - Franck- Condon principle rotation fine structure of	
	electronic Vibrational spectra- the Fortratprapbola - Dissociation	

	and pre-dissociation spectra.	
Unit V	Spectroscopy III	12 Hours
	Magnetic properties of nuclei-resonance condition- NMR instrumentation – Relaxation processes – chemical shift – spin- spin splitting- quadrupole moment and electrical field nuclear quadrupole resonance, NQR – principles and applications –nuclear quadrupole coupling in atoms and molecules – identification of ionic character and hybridization- ENDOR, Overhauser effect , FT-NMR spectroscopy , Lanthanide shift reagents – NMR imaging. ESR – principles– hyperfine structure – ESR spectra of free radicals in solutions – Anisotropic systems – systems in triplet	12 110415
	state Zero fields splitting in ESR and Krammers degeneracy.	

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Book

- 1. Peter Atkins and Julio de Paula (2018) Physical Chemistry, (11th edition) Oxford University Press.
- 2. Hofmann, and Andreas (2018) Physical Chemistry Essentials, springer publications.
- 3. Anatol Malijevsk´y, CSc., et al. (2010) Physical Chemistry In Brief, Institute of Chemical Technology, Prague Faculty of Chemical Engineering.

References Books

- 1. Aruldhas. G (2011), -Molecular Structure and Spectroscopy, Prentice Hall of India Pvt., Ltd New Delhi.
- 2. Gopinathan M.S & Ramakrishnan V (2013), Group Theory Applications to Quantum Chem, Spectroscopy & Ligand Field Theory
- 3. Soni, P. L. (2011) Text Book of Physical Chemistry, sulthan chand & sons.

E-Resources

- Annual Review of Physical Chemistry.
- <u>Smithsonian Physical Tables.</u>
- Lange's Handbook of Chemistry.
- Nature Physical Chemistry.
- <u>Hawley's Condensed Chemical Dictionary.</u>
- Chem.Libretexts.Org

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Infer the fundamentals of group theory
CO2	Apply the Principles of group theory to various compounds
CO3	Analyze the Applications of molecular spectroscopy
CO4	Categorize the various instrumental techniques in molecular spectroscopy
CO5	Interpret the various functions of spin resonance spectroscopy.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	3	1	1
CO2	3	3	2	1	3	3
CO3	2	1	3	1	2	2
CO4	2	3	1	3	1	1
CO5	3	3	2	3	3	3

Mapping of Bloom's Taxonomy - Programme Outcome with Course Outcome

1. Low, 2. Medium & 3. High

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units	Cos	K – Level	мс	CQs	Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Upto K3	2	K1 & K2	2(K3&K3)	1(K2)
3	CO3	Upto K4	2	K1 & K2	2(K2&K2)	1(K4)
4	CO4	Upto K4	2	K1 & K2	2(K3&K3)	1(K4)
5	CO5	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
No of Qu	uestions t	o be asked	10		10	5
No of Qu	uestions t	o be	10		5	3
answered	1					
Marks fo	or each Q	uestion	1		4	10
Total Ma	arks for e	ach Section	10		20	30

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

Distri	bution of	Section	–wise Ma	arks v	with K	Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5	5%
K2	5	24	20	49	49	49%
K3	-	16	10	26	26	26%
K4	-	-	20	20	20	20%
Total Marks	10	40	50	100	100	100%

	Lesson Plan		
Unit I	Group Theory I	12 Hours	Mode
	a) Molecular symmetry elements and symmetry operations – vector and matrix algebra	3	Chalk and talk, Power
	b) Symmetry operations and transformation matrices – Group – definition and properties of a group	3	point presentation
	c) Symmetry point groups- representation of a group – reducible and irreducible representations-	3	
	Great orthogonality theorem- characters – construction of character tables- C_2V , C_3V , C_4V . d) Construction of character tables C_2h and D2d Direct product concept.	3	
Unit II	Group Theory II	12 Hours	Mode
	a) Symmetry of normal modes of vibration, application of group theory to normal modes of vibrations and to normal ,mode analysis —	3	Chalk and talk, Power point
	b) Symmetry properties of integrals – application for spectral selection rules of vibration spectra.	3	presentation
	c) Symmetry of molecular orbital and symmetry selection rule for electronic transitions in simple molecules like ethylene, formaldehyde and	3	
	benzene.d). Wave functions as the basis of irreducible and delocalization energy for cyclopropenyl, butadiene	3	
	and benzene system.		
Unit III	Spectroscopy I	12 Hours	Mode
	a) Electromagnetic spectrum – Types of molecular		Chalk and
	energies – Absorption and emission of radiation – Einstein's coefficient – induces emission and absorption.	3	talk, power point presentation
	Einstein's coefficient – induces emission and absorption. b) Rotational spectra of rigid diatomic molecules – isotope effect in rotational spectra – Microwave	3	point
	 Einstein's coefficient – induces emission and absorption. b) Rotational spectra of rigid diatomic molecules – isotope effect in rotational spectra – Microwave spectrometer c) Information's derives from rotational spectra. Infrared spectroscopy – Vibrational energy of a diatomic molecule – infrared selection rules 		point
	 Einstein's coefficient – induces emission and absorption. b) Rotational spectra of rigid diatomic molecules – isotope effect in rotational spectra – Microwave spectrometer c) Information's derives from rotational spectra. Infrared spectroscopy – Vibrational energy of a diatomic molecule – infrared selection rules d) Diatomic vibration rotator – vibrations of polyatomic molecules – overtone, combination and difference bands – concept of group frequencies – coupling interaction- Fermi 	3	point
	 Einstein's coefficient – induces emission and absorption. b) Rotational spectra of rigid diatomic molecules – isotope effect in rotational spectra – Microwave spectrometer c) Information's derives from rotational spectra. Infrared spectroscopy – Vibrational energy of a diatomic molecule – infrared selection rules d) Diatomic vibration rotator – vibrations of polyatomic molecules – overtone, combination and difference bands – concept of group frequencies – coupling interaction- Fermi resonance Fourier transform infrared spectroscopy. 	3 3 3	point presentation
Unit IV	 Einstein's coefficient – induces emission and absorption. b) Rotational spectra of rigid diatomic molecules – isotope effect in rotational spectra – Microwave spectrometer c) Information's derives from rotational spectra. Infrared spectroscopy – Vibrational energy of a diatomic molecule – infrared selection rules d) Diatomic vibration rotator – vibrations of polyatomic molecules – overtone, combination and difference bands – concept of group frequencies – coupling interaction- Fermi resonance Fourier transform infrared spectroscopy. 	3 3 3 12 Hours	point presentation Mode
Unit IV	 Einstein's coefficient – induces emission and absorption. b) Rotational spectra of rigid diatomic molecules – isotope effect in rotational spectra – Microwave spectrometer c) Information's derives from rotational spectra. Infrared spectroscopy – Vibrational energy of a diatomic molecule – infrared selection rules d) Diatomic vibration rotator – vibrations of polyatomic molecules – overtone, combination and difference bands – concept of group frequencies – coupling interaction- Fermi resonance Fourier transform infrared spectroscopy. Spectroscopy II a) Raman spectroscopy – Theories of Raman scattering – Rotational Raman spectra – Vibrational Raman spectra – Electronic spectra of diatomic and polyatomic molecules- 	3 3 3	point presentation
Unit IV	 Einstein's coefficient – induces emission and absorption. b) Rotational spectra of rigid diatomic molecules – isotope effect in rotational spectra – Microwave spectrometer c) Information's derives from rotational spectra. Infrared spectroscopy – Vibrational energy of a diatomic molecule – infrared selection rules d) Diatomic vibration rotator – vibrations of polyatomic molecules – overtone, combination and difference bands – concept of group frequencies – coupling interaction- Fermi resonance Fourier transform infrared spectroscopy. Spectroscopy II a) Raman spectroscopy – Theories of Raman scattering – Rotational Raman spectra – Vibrational Raman spectra. 	3 3 3 12 Hours	point presentation Mode Chalk and talk, power point

	principles and applications – quadrupole moment and electrical field nuclear quadrupole resonance d) Nuclear quadrupole coupling in atoms and molecules – identification of ionic character and hybridization.	3	
Unit V	Spectroscopy III	12 Hours	Mode
	 a) Magnetic properties of nuclei – Resonance condition – NMR instrumentation – Relaxation processes – Bloch equations b) Chemical shift – spin – spin splitting , relaxation times , line shape and line width experimental technique- c) END OR, Overhauser effect, FT-NMR spectroscopy, Lanthanide shift reagents – NMR imaging. ESR – principles of ESR – total Hamiltonian – hyperfine structure – d) ESR spectra of free radicals in solutions – Anisotropic systems – systems in triplet state Zero fields splitting in ESR and Krammers degeneracy. 	3 3 3 3	Chalk and talk, power point presentation, Group Discussion

Course Designed by Dr.S.Ignatius Arockiam and Mrs.G.Benitta

Programme	M.Sc Chemistry	Programme Code		РСН	
Course Code	20PCHE31	Number of Hours / Cycle	4		
Semester	III	Max. Marks		100	
Part	III	Credit		4	
	Core Elective	Core Elective Course – I A			
Course Title	Pharmaceutical Chemistry L T			Р	
Cognitive Level	Up to K4		60	-	-

Preamble

This course gives knowledge about metabolic drug development in anesthetics, sedatives, hypnotics, analgesics and antibiotics.

Unit I	Fundamental of Pharmaceutical Chemistry	12 Hours
	Definitions of Medicinal Chemistry, Pharmacology and	
	molecular pharmacology – major process involved in drug action	
	- pharmacokinetics phase - Quantitative structure Activity	
	Relationship (QSAR) - Hansch approach - concept of bio	
	isomerism - pharmacodynamics phase - receptors and	
	classification of membrane bound receptors – enzyme inhibitors	
	as drugs.	
Unit II	Classification of drugs	12 Hours
	Classification of drugs- Chemotherapeutic Agents - (5-	
	fluorouracil, Cisplatin, Carnplatin), Antitubercular Drugs	
	(Isoniazid, Rifampicin, Pyrazinamine) - Antimalarial Drugs	
	(Chloroquin, Primaguine, Amaodiaquine) Antihypertensive	
	Drugs (Nifedipine Captopril Hydralazine sodium nitropruside, clonidine methyldopa and guanothidine) –Antihistamines	
	(Antagonists pheniramine, chlorpheniramine, Diphenylhydramine	
	Mepyramine promethazine)	
Unit III	Anti – Inflammatory Drugs	12 Hours
	The fundamentals actions of Antipyrefics - fundamentals actions	12 110415
	of Non- narcotic analgestics- Classification and synthesis of	
	Aspirin, Sodium salicylate- synthesis of paracetamol and	
	phenylbuttazone- Oxyphenlibutaxone and Ibuprofen- synthesis	
	of Mephenamic acid and Diclofenac sodium	
Unit IV	Antimalerials, Antiamoebic and Anti-infective agents	12 Hours
	Antimalerials: Mechanism of action and SAR of Quinolone	
	antimalarials, Synthesis of Chloroquin, Primaquin and	
	Quinacrine. Antiamoebic agents: Introduction, Classification, and	
	Mechanism of action and Synthesis of Metronidazole, Iodoquinol	
	and Dimercaprol Anti-infective agents: Introduction,	
	Classification, Mechanism of action, Synthesis and SAR of	
	Nitrofurazone and Furazolidos	
Unit V	Antibiotics and Steroids	12Hours
	Structural features and mode of action of the following	
	antibiotics – penicillin G, cephalosphorin and their semisynthetic	
	analogsw (β -lactum), streptomycin (aminoglycoside),	
	terramycine (tetracylin), erythromycin (macrolide) and chloromphonical Physiologically active staroids their structural	
	chloromphenicol. Physiologically active steroids – their structural features and therapeutic use. Oral contraceptive, anabolic steroids	
	anti – inflammatory steroids.	

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Books

- 1. William O. Foye, Thomas L. Lemke, David A. Williams, Principles of Medicinal Chemistry, Lippincott Williams & Wilkins, 4th Edition, 1995.
- 2. Wilson & Gisvold's Textbook of Organic Pharmaceutical and Medicinal Chemistry, John.M. Beale and John. H. Block, Lippincott Williams & Wilkins, 10th Edition, 1998.
- 3. J.B Taylor and P.D. Kennewell, Introductory Medicinal Chemistry Ellisworth Publishers, 1985.

Reference Books

- 1. M.E. Wolf, Burger's Medicinal Chemistry and Drug Discovery: Therapautic Agents, Wiley Blackwell; 5th Edition edition, 1997.
- 2. G. L. Patrick, An introduction to Medicinal Chemistry II edn., Oxford University Press, 2001.
- 3. T. Nagradi Medicinal Chemistry A Biochemical Approach, Oxford University Press 2004.

E-Resources

- https://en.wikipedia.org/wiki/Medicinal_chemistry
- <u>https://www.nature.com/subjects/medicinal-chemistry</u>
- https://en.m.wikipedia.org/wiki/Antibiotics and Steroids
- https:// en.m.wikipedia.org/wiki/ Anti Inflammatory Drugs
- https://chem.libretexts.org/Bookshelves/Pharmacetical_chemistry

Course Outcomes

On successful completion of the course, the student will be able to

No.	Course Outcome
CO1	Learn about the fundamentals of the Pharmaceutial Chemistry
CO2	Learn about the Classification of drugs.
CO3	To know about the synthesis of Anti – Inflammatory Drugs
CO4	Examine the Antimalerials, Antiamoebic and Anti-infective agents
CO5	Explain about the synthesis of antibiotics and Steroids.

Mapping of Bloom's Taxonomy – Programme Outcome with Course Outcome

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	1	3	2	2	1
CO2	2	1	2	2	2	1
CO3	2	1	2	3	1	2
CO4	2	2	2	2	2	1
CO5	2	1	1	2	3	2

1. Low, 2. Medium & 3. High

			Section A		Section B	Section C	
Units	Cos	Cos K – Level MCQs		CQs	Either/or Choice	Open Choice	
			No. of Questions K-Level		No. of Questions	No. of Questions	
1	CO1	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)	
2	CO2	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)	
3	CO3	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)	
4	CO4	Upto K4	2	K1 & K2	2(K3&K3)	1(K4)	
5	CO5	Upto K3	2	K1 & K2	2(K3&K3)	1(K3)	
No of C	Question	s to be asked	10		10	05	
No of Questions to be answered		10		05	03		
Marks for each Question		01		04	10		
Total N	Aarks for	each Section	10		20	30	

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	24	10	39	39%	39%
K3	-	16	30	46	46%	46%
K4	-	-	10	10	10%	10%
Total Marks	10	40	50	100	100%	100%

Distribution of Section -wise Marks with K Levels

Lesson Plan

Unit I	Fundamental of Pharmaceutical	12 Hours	Mode
	Chemistry		
	a)Definitions of Medicinal Chemistry,		Chalk and talk,
	Pharmacology and molecular pharmacology	3	Power point
	b) Major process involved in drug action –		presentation,
TI*4 T	pharmacokinetics phase – Quantitative	4	Group Discussion
Unit I	structure Activity Relationship (QSAR)		_
	c) Hansch approach – concept of bio		
	isomerism – pharmacodynamics phase –		
	receptors and classification of membrane	5	
	bound receptors .Enzyme inhibitors as drugs.		
Unit II	Classification of drugs	12 Hours	Mode

	a) Classification of drugs - Chemotherap-		Chalk and talk,
	eutic Agents- (5-fluorouracil, Cisplatin, Carnplatin)	3	Power point presentation
	b) Antitubercular Drugs (Isoniazid, Rifampicin, Pyrazinamine)- Antimalarial Drugs (Chloroquin, Primaguine,	3	presentation
	Amaodiaquine) c) Antihypertensive Drugs (Nifedipine Captopril Hydralazine sodium nitropruside, clonidine methyldopa and guanothidine)	3	
	d) Antihistamines (Antagonists phenir- amine, chlorpheniramine, Diphenyl hydramine Mepyramine promethazine)	3	
Unit III	Anti – Inflammatory Drugs	12 Hours	Mode
	a)Fundamentals actions of Antipyrefics. The fundamentals actions of Non- narcotic analgestics.	4	Chalk and talk, Power point presentation
	b) Classification and synthesis of Aspirin, Sodium salicylate. Synthesis of paracetamol and phenylbuttazone.	4	p
	c) Oxyphenlibutaxone and Ibuprofen. Synthesis of Mephenamic acid and Diclofenac sodium.	4	
Unit IV	Antimalerials, Antiamoebic and Anti-	12 Hours	Mode
	a) Antimalerials: Mechanism of action and		Chalk and talk,
	SAR of Quinolone antimalarials, Synthesis of Chloroquin, Primaquin and Quinacrine.	4	Power point presentation
	Chloroquin, Primaquin and Quinacrine.b) Antiamoebic agents: Introduction, Classification, and Mechanism of action and Synthesis of Metronidazole, Iodoquinol and	4	
	Chloroquin, Primaquin and Quinacrine.b) Antiamoebic agents: Introduction, Classification, and Mechanism of action and		
Unit V	 Chloroquin, Primaquin and Quinacrine. b) Antiamoebic agents: Introduction, Classification, and Mechanism of action and Synthesis of Metronidazole, Iodoquinol and Dimercaprol. c) Anti-infective agents: Introduction, Classification, Mechanism of action, Synthesis and SAR of Nitrofurazone and 	4	
Unit V	 Chloroquin, Primaquin and Quinacrine. b) Antiamoebic agents: Introduction, Classification, and Mechanism of action and Synthesis of Metronidazole, Iodoquinol and Dimercaprol. c) Anti-infective agents: Introduction, Classification, Mechanism of action, Synthesis and SAR of Nitrofurazone and Furazolidos. Antibiotics and Steroids a) Structural features and mode of action of the following antibiotics – penicillin G, cephalosphorin and their semi synthetic 	4	presentation
Unit V	 Chloroquin, Primaquin and Quinacrine. b) Antiamoebic agents: Introduction, Classification, and Mechanism of action and Synthesis of Metronidazole, Iodoquinol and Dimercaprol. c) Anti-infective agents: Introduction, Classification, Mechanism of action, Classification, Mechanism of action, Synthesis and SAR of Nitrofurazone and Furazolidos. Antibiotics and Steroids a) Structural features and mode of action of the following antibiotics – penicillin G, 	4 4 12 Hours	presentation Mode Chalk and talk, Power point
Unit V	 Chloroquin, Primaquin and Quinacrine. b) Antiamoebic agents: Introduction, Classification, and Mechanism of action and Synthesis of Metronidazole, Iodoquinol and Dimercaprol. c) Anti-infective agents: Introduction, Classification, Mechanism of action, Synthesis and SAR of Nitrofurazone and Furazolidos. Antibiotics and Steroids a) Structural features and mode of action of the following antibiotics – penicillin G, cephalosphorin and their semi synthetic analogs (β-lactum) b) Streptomycin (aminogly coside), terramycine (tetracylin), erythromycin 	4 4 12 Hours 3	presentation Mode Chalk and talk, Power point

Course Designed by Mr.S.Philip Arockiaraj and Mrs.M.Shanmuga Priya

Programme	M.Sc Chemistry	Programme Code		РСН				
Course Code	20PCHE32	Number of Hours / Cycle		4				
Semester	III	Max. Marks	100					
Part	III	Credit	4					
	Core Elective Course I B							
Course Title	Macromolecu	Macromolecular Chemistry			Р			
Cognitive Level	Up to K4		60	-	-			

Preamble

This course leads to know the concepts of polymerization and its techniques, crystallinity of polymers and its applications and also know about additives for polymeric products.

Unit I	Concepts of Monomer	12 Hours		
	Basic concepts of Monomer , Types of Monomer , Functionality of			
	Monomer ,Purification of Monomer, Repeat unit, degree of			
	polymerization. Classification of polymers, Stereochemistry of			
	polymer, nomenclature of stereo regular polymers. Chain			
	polymerization, free radical polymerization and ionic			
	polymerization.			
Unit II	Concepts of Polymer	12 Hours		
	Basic concepts of Polymer. Effect of functionality on Polymer			
	Structure. Chemical and geometric structure of polymer.			
	Configuration and conformation, Linear, branched and cross-linked			
	structure, Random, alternating, block and graft polymers, Stereo			
	regular polymer. Classification of Polymer based on: Structure,			
	Repeating unit, Source, Nature and Processing.			
Unit III	Polymerization Reactions	12 Hours		
	Addition Polymerization reactions, Free radical polymerization,			
	Ionic polymerization, Co-ordination polymerization, Condensation			
	Polymerization, Poly condensation polymerization, Poly addition			
	polymerization, Rearrangements and Stereo Polymerization, Co-			
	Polymerization, Free radical polymerization, Ionic polymerization,			
	Co-poly condensation polymerization			
Unit IV	Molecular Weight and Polymer Crystallization	12 Hours		
	Measurement of molecular weight and size; number average and			
	weight average molecular weights. Glass transition temperature,			
	concepts of glass transition temperature and associated properties.			
	Glassy solids and glass transition, factors influencing glass			
	transition temperature (Tg). Crystallinity in polymers; Polymer			
	crystallization, structural and other factors affecting			
	crystallisability, effect of crystallinity on the properties of			
	polymers.			
Unit V	Types of Polymers and Polymer Degradation	12 Hours		
	Synthetic resins and plastics; Manufacture and applications of			
	polyethylene, PVC, Teflon, poly styrene, polymethylmethacrylate,			
	poly urethane, phenol – formaldehyde resins, urea- formaldehyde			
	resins and epoxy polymers. Polymer degradation: Types of			
	degradation- thermal, mechanical, photo, hydrolytic and oxidative			
	degradations. Additives for polymers: Fillers, plasticizers, thermal			
	stabilizers, photo stabilizers, anti oxidants and colourants.			

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Books:

- 1. Fred. W. Billmeyer, Text Book of Polymer Science, John Wiley & Sons, Third Edition, 2007.
- 2. R. V. Gowariker, Polymer Science, New Age International Publication, 2006.
- 3. Arora & Singh, Polymer Chemistry, Anmol Publications Pvt.2002.

Reference Books:

- 1. A. Ravve, Principles of Polymer Chemistry, Springer New York, Third Edition, 2012.
- 2. R. J. Young and P. A. Powell, Introduction to Polymers, CRC Press, Third Edition, 1991.
- 3. Charles E. Carraher Jr, Introduction to polymer chemistry, Boca Raton, Forth Edition, 2017

E-Resources

- <u>https://www.miltonroy.com/en-in/packaged-systems/polypack-polymer-preparation-units.</u>
- <u>https://en.wikipedia.org/wiki/Polymer.</u>
- <u>https://www.britannica.com/science/polymer.</u>
- https://sciencing.com/natural-polymers-8707376.html.
- <u>https://chemed.chem.purdue.edu/genchem/topicreview/bp/1polymer/types.html</u>

Course Outcomes

On successful completion of the course, the student will be able to

No.	Course Outcome
CO1	Learn about the basic concepts of monomers.
CO2	Explain the various types polymerization reactions.
CO3	Examine the various measurements of polymerization technique.
CO4	Importance of polymer crystalline.
CO5	Analyze the types of polymers.

Mapping of Bloom's Taxonomy - Programme Outcome with Course Outcome

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	1	2	2	1
CO2	2	2	1	1	2	1
CO3	2	1	2	1	3	2
CO4	2	2	1	1	2	1
CO5	2	1	1	3	2	2

1. Low, 2. Medium & 3. High

			Section	on A	Section B	Section C
Units	Cos	K – Level	МС	Qs	Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
3	CO3	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
4	CO4	Upto K4	2	K1 & K2	2(K3&K3)	1(K4)
5	CO5	Upto K4	2	K1 & K2	2(K3&K3)	1(K4)
No of Q	uestions to	be asked	10		10	5
No of Q	No of Questions to be answered				5	3
Marks for each Question			1		4	10
Total Ma	arks for ea	ach Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

Distribution of Section -wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	5	5%	5%
K2	5	24	10	39	39%	39%
K3	-	16	20	36	36%	36%
K4	-	-	20	20	20%	20%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit	Description	Hours	Mode				
Unit I Concepts of Monomer	 a) Basic concepts of Monomer, Types of Monomer, Functionality of Monomer, Purification of Monomer b) Monomer, Repeat unit, degree of polymerization. c) Classification of polymers, Stereochemistry of polymers, Stereochemistry of polymer, nomenclature of stereo regular polymers. d) Chain polymerization, free radical polymerization and ionic polymerization 	3 3 3 3	Chalk and talk, Power point presentation, Group Discussion				

	a)Basic concepts of Polymer. Effect of		Chalk and talk,
	functionality on Polymer Structure.	4	Power point
		4	
	Chemical and geometric structure of		presentation
Unit II	polymer.	4	
Concepts of	b) Configuration and conformation,	4	
Polymer	Linear, branched and cross-linked		
- J -	structure, Random, alternating, block and		
	graft polymers, Stereo regular polymer.	4	
	c) Classification of Polymer based on:		
	Structure, Repeating unit, Source, Nature		
	and Processing.		<u></u>
	a) Addition Polymerization reactions,		Chalk and talk,
	Free radical polymerization, Ionic poly-	4	Power point
	merization, Co-ordination polymerization,		presentation
Unit III	Condensation Polymerization.		
Polymerization	b) Polycondensation - polymerization-		
Reactions	Polyaddition-polymerization, Rearrangem	4	
	ents and Stereo Polymerization		
	c) Co-Polymerization, Free radical		
	polymerization, Ionic polymerization, Co-	4	
	poly condensation polymerization		~
	a) Measurement of molecular weight and		Chalk and talk,
	size; number average and weight average	4	Power point
	molecular weights.		presentation
T T 1 / T T	b) Glass transition temperature, concepts		
Unit IV	of glass transition temperature and		
Molecular	associated properties. Glassy solids and	4	
Weight and	glass transition, factors influencing glass		
Polymer	transition temperature (Tg).		
Crystallization	c) Crystallinity in polymers; Polymer		
	crystallization, structural and other factors	4	
	affecting crystallisability, effect of		
	crystallinity on the properties of		
	polymers.		<u> </u>
	a) Synthetic resins and plastics;	4	Chalk and talk,
	Manufacture and applications of	4	Power point
	polyethylene, PVC, Teflon, poly styrene,		presentation,
TT •4 T7	polymethyl methacrylate, poly urethane,		
Unit V	phenol.		
Types of	b) Formaldehyde resins, urea-	A	
Polymers and	formaldehyde resins and epoxy polymers.	4	
Polymer	Polymer degradation: Types of		
Degradation	degradation- thermal, mechanical, photo,		
	hydrolytic and oxidative degradations.		
	c) Additives for polymers: Fillers,	4	
	plasticizers, thermal stabilizers, photo		
	stabilizers, anti oxidants and colourants.		

Course Designed by Mr.S.Philip Arockiaraj

and Mrs.M.Shanmuga Priya

Programme	M.Sc Chemistry	Programme Code			РСН	
Course Code	20PCHN31	Number of Hours / Cycle		Number of Hours / Cycle		6
Semester	III	Max. Marks		100		
Part	III	Credit		5		
	Non Major El	ective Course	I			
Course Title	Environmental Science	L		Т	Р	
Cognitive Level	Up to K4		90		-	-

Preamble

This course gives information about the various types of pollutions analysis of pollutants and its effects and control methods.

Unit I	Fundamentals of Environmental Science	18 Hours		
	Introduction – Environmental science – Environmental chemistry –			
	Ecology - Definition- Eco – System – Cycling of mineral elements			
	and gases - Phosphate cycle-carbon cycle Hydrogen cycle -			
	Nitrogen cycle – Hydrological cycle Environmental segments –			
	pollution and its types: Air pollution -water pollution - soil			
	pollution – radioactive pollution thermal pollution – noise pollution			
	- marine pollution other types of pollution - and its effects and			
	control – remedial measures.			
Unit II	Air Pollution	18 Hours		
	Introduction- sources of air pollution – air pollutants –			
	classification and effects of air pollutants - Oxides of nitrogen,			
	sulphur and carbon – acid rain –effects and control – hydrogen			
	sulphide - effects and control - carbon mono oxide effects and			
	control- photo chemical smog-effects and control fly ash- effects			
	and control - green house effect - global warming- effects and			
	control – ozone layer – ozone depletion – cholorofluroro carbons –			
	effects and control.			
Unit III	Water Pollution	18 Hours		
	Introduction – types of water – water pollution – water pollutants –			
	classification – physical, chemical and biological inorganic			
	pollutants and toxic metals – organic pollutants – radioactive			
	polluntants in water – pesticides and fertilizers – suspended			
	particles – water, quality – water quality index – ill effects of water			
	pollutants fluorosis – water pollution control – water treatment –			
	primary, secondary and tertiary treatment – desalination – reverse			
TI:4 TT7	osmosis – sewage and industrial waste water treatment.	10 TT		
Unit IV	Soil Pollution	18 Hours		
	Introduction- types of soil- soil pollution – types – indicators of soil pollution – plants as indicators of pollution – sources of soil			
	pollution – plants as indicators of pollution – sources of son pollution – fertilizers and pesticides – radioactive pollutants – solid			
	wastes – soil sediments as pollutant – soil erosion – treatment of			
	soil pollutants – solid wastes – thermal methods – land filling			
	composting – land protection – remedial measure for soil pollution.			
Unit V	Analysis of Pollutants	18 Hours		
	Introduction analysis of air pollutants – units – sampling –devices			
	and methods for sampling – measurements: UV –visible			
	spectrometry IR spectrometry – emission spectrometry –			
	turbidimetry nephelometry – gas chromatography – HPLC –			
	chemiluminescence of nitrogen oxides – IR photometry –			
		l		

conductometry – analysis of water pollutants units sampling – devices and methods for sampling measurement : UV –Visible spectrometry titration – analysis of different water quality	
parameters – BOD-COD – analysis and monitoring of pesticids	
caroiongens and industrial pollutants.	

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Books

- 1. B.K. Sharma and H.Kaur, Environmental Chemistry Krishna Prakashan, Meerut, 1997
- 2. A.K. De, Enviroonmental Chemistry, Wiley Eastern Ltd., Meerut, 1994
- 3. A.K.Mukherjee , Environmental pollution and health hazards Causes and Control Galgotia Press , New Delhi, 1986

Reference Books

- 1. N.Manivasakam, physic chemical examination of water sewage and Industrial effluents, Pragati Prakashan Publ., Meerut, 1985
- 2. Bhatia SC, Environmental chemistry. CBS publishers and Distributors, New Delhi, 2002.
- 3. Chatwal A, Instrumental methods of chemical analysis. Himalaya publishing House, Mumbai, 1999.

E-Resources

- https://en.wikipedia.org/wiki/Environmental_science
- <u>https://www.sciencedirect.com/topics/earth-and-planetary</u> sciences/environmentalpollution.
- https://businessjargons.com/environmental-analysis.html.
- <u>https://en.wikipedia.org/wiki/Environmental_analysis.</u>
- https://en.wikipedia.org/wiki/Pollutant

Course Outcomes

On successful completion of the course, the student will be able to

	······································				
CO1	Learn about the fundamentals of the Environmental Science				
CO2	Explain about the air pollution.				
CO3	Examine the various effects of water pollution.				
CO4	Learn about the types of soil pollution.				
CO5	To know the principles of various analysis methods in environmental science.				

Mapping of Bloom's Taxonomy – Programme Outcome with Course Outcome

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	1	2	3	1
CO2	2	2	2	2	2	2
CO3	2	1	2	1	3	2
CO4	2	2	2	1	2	1
CO5	2	1	1	2	2	2

1. Low, 2. Medium & 3. High

			Section		Section B	Section C
Units	Cos	K – Level	MCQs		Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Upto K2	2	K1 & K2	2(K2&K2)	2(K2)
2	CO2	Upto K2	2	K1 & K2	2(K2&K2)	2(K2)
3	CO3	Upto K3	2	K1 & K2	2(K2&K2)	2(K3)
4	CO4	Upto K3	2	K1 & K2	2(K3&K3)	2(K3)
5	CO5	Upto K4	2	K1 & K2	2(K3&K3)	2(K4)
No of Q	No of Questions to be asked		10		10	5
No of Questions to be answered		10		5	3	
Marks for each Question		1		04	10	
Total N	larks for	each Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems K4 – Examining, analyzing, presentation and make inferences with evidences

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5			5	5%	5%
K2	5	24	20	49	49%	49%
K3		16	20	36	36%	36%
K4			10	10	10%	10%
Total Marks	10	40	50	100	100%	100%

Lesson Plan

Unit	Description	Hours	Mode
	a) Introduction - Environmental science -		Chalk and talk,
	Environmental chemistry – Ecology -	6	Power point
	Definition- Eco - System - Cycling of		presentation,
	mineral elements and gases		Group
Unit I	b) Phosphate cycle-carbon cycle Hydrogen		Discussion
Fundamentals	cycle - Nitrogen cycle - Hydrological cycle	6	
of	Environmental segments		
Environmental	c) Pollution and its types: Air pollution –		
Science	water pollution – soil pollution – radioactive		
	pollution thermal pollution – noise pollution	6	
	– marine pollution other types of pollution –		
	and its effects and control - remedial		
	measures.		

	a) Introduction sources of air pollution air		Chalk and talk,
	a) Introduction- sources of air pollution – air pollutants – classification and effects of air pollutants – Oxides of nitrogen, sulphur and carbon	6	Power point presentation
Unit II Air Pollution	b) Acid rain – effects and control – hydrogen sulphide – effects and control – carbon mono oxide effects and control- photo chemical smog-effects and control fly ash- effects and	6	
	control c) Green house effect – global warming- effects and control – ozone layer – ozone depletion – cholorofluroro carbons – effects and control	б	
	a) Introduction – types of water – water pollution – water pollutants – classification – physical, chemical and biological inorganic pollutants and toxic metals – organic pollutants – radioactive pollutants in water –	6	Chalk and talk, Power point presentation
Unit III Water Pollution	pesticides and fertilizers b) suspended particles – water , quality – water quality index – ill effects of water pollutants fluorosis – water pollution control –water treatment	6	
	 c) primary , secondary and tertiary treatment – desalination – reverse osmosis – sewage and industrial waste water treatmen 	6	
	a) Introduction- types of soil- soil pollution – types – indicators of soil pollution – plants as indicators of pollution	6	Chalk and talk, Power point presentation
Unit IV Soil Pollution	b) sources of soil pollution – fertilizers and pesticides – radioactive pollutants – solid wastes – soil sediments as pollutant – soil erosion – treatment of soil pollutants	6	
	c) Solid wastes – thermal methods – land filling composting – land protection – remedial measure for soil pollution.	6	
	 a) Introduction analysis of air pollutants – units – sampling –devices and methods for sampling – measurements: UV –visible spectrometry IR spectrometry b)Emission spectrometry – turbidimetry 	6	Chalk and talk, Power point presentation,
Unit V Analysis of Pollutants	nephelometry – gas chromatography – HPLC – chemiluminescence of nitrogen oxides –IR photometry – conductometry – analysis of water pollutants units sampling – devices and methods for sampling	6	
	measurement . c) UV –Visible spectrometry titration – analysis of different water quality parameters – BOD-COD – analysis and monitoring of pesticids caroiongens and industrial pollutants	6	

Course Designed by Mr.S.Philip Arockiaraj and Mrs.M.Shanmuga Priya

Programme	M.Sc Chemistry	Programme Code		РС	Η
Course Code	20PCHC3P	Number of Hours / Cy	cle	le 8	
Semester	III	Max. Marks	100		0
Part	III	Credit		4	
	Core Pra	actical III			
Course Title	Physical Chemistry Practical			Т	Р
Cognitive Level	Up to K3			-	120

Preamble

Motivate the students to understand the principles of chemical kinetics, potentiometric and conduct metric titrations. To impart knowledge with respect to the phase transformation of different systems.

1. Adsorption Experiments

i. Adsorption of oxalic acid/Acetic acid on Charcoal

2. Potentiometric Methods

- i. Precipitations titration Ag+ vs Halide mixture
- ii. Redox titrations ceric ammonium sulphate vs ferrous ammonium sulphate
- iii. Permagnate vs iodide ion
- iv. Determination of dissociation constant of weak acids and pH of buffer solution
- v. Determination of solubility product of sparingly soluble salts.
- vi. Determination of dissociation constant of weak acids.

3. Conductometric Experiments

- i. NH₄Cl NaOH Mixture of NH₄Cl & HCl.
- ii. CH₃ COOH NaOH Mixture of CH₃COOH & HCl
- iii. $Na_2CO_3 Pb(NO_3)_2 Na_2CO_3$
- iv. $K_2SO_4 BaCl_2 K_2SO_4$

Text Books

- 1. Yadav, J. B (2005): Advanced Practical Physical Chemistry, 22ndedition, Goel publishing House, Krishna Prakashan Media Ltd.
- 2. Venkatesan, V,Veeraswamy, R and Kulandaivelu, A.R (1997): Basic Principles of Practical Chemistry", 2nd edition, Sultan Chand and Sons Publication, New Delhi.

Reference Books

- 1. Findlay's (1985): Practical Physical Chemistry, Revised and edited by B.P. Levitt 9th edition, Longman, London.
- 2. Chatwal, G.R. and Anand, S.K (2000): Instrumental Methods of Chemical Analysis, Himalaya Publishing House, Delhi.

E-Resources

- Adsorption Experiments.
- Potentiometric Methods
- Conductometric Experiments
- Chemlibtext.org

Course Outcomes

Upon completion of this course, the students will be able to:

CO1	Design, conduct, analyze and interpret results of an experiment, and effectively communicate these in written reports
CO2	Develop interdisciplinary solutions to a variety of chemical problems,
CO3	Communicate effectively in a variety of forms
CO4	Use terminology appropriate to the field of study correctly and contextually.
CO5	Extend knowledge and understanding of a variety of chemical concepts in a range of contexts.

Programme	M.Sc Chemistry	Programme Code		РСН	
Course Code	20PCHC41	Number of Hours / C	ycle	5	
Semester	IV	Max. Marks		100	
Part	III	Credit		5	
	Core Co	ourse XII	·		
Course Title	Organic Chemistry IV		L	Т	Р
Cognitive Level	Up to K3		75	-	-

Preamble

The course deals the concepts of electrocyclic reactions, cycloaddition and sigmatropic reactions, and also to know about the mechanism of organic photochemistry reaction, synthetic methods of transition metal complexes in organic chemistry, to know the mechanism and synthetic uses of molecular rearrangements.

Unit I	Pericyclic Reactions	15 Hours				
	Concerted reactions – orbital symmetry and correlation diagram					
	approach – FMO and PMO approach, Woodward-Hofmann rules –					
	Electrocyclic reactions (1,3-butadiene-cyclobutene and 1,3,5-					
	hexatriene-cyclohexadiene systems) - cycloadditions [2+2] and					
	[2+4] systems (ethylene-cyclobutane, ethylene and 1,3-butadiene-					
	cyclohexene systems), sigmatropic reaction (1,3 hydrogen shift,					
	1,3 carbon shift, 1,5 hydrogen shift, 1,5 carbon shift).					
Unit II	Organic Photochemistry	15 Hours				
	Characteristics of photo reactions – photo reductions and photo oxidation – photoreactions of carbonyl compounds – Norrish type I and Norrish type II reactions, di-pi methane rearrangement – photochemistry of arenes, photochemistry of alkenes, cis-trans isomerisation – rearrangements of cyclic α,β – unsaturated ketones and 2,5-cyclohexadienone – Barton reaction – Paterno Buchi reaction.					
Unit III	Retro Synthetic Methods	15 Hours				
	Planning a synthesis – Relay approach and convergent approach to total synthesis, functional group inter conversions – use of activating and blocking groups in synthesis, Transition metal complexes in organic chemistry, Homogeneous hydrogenation, Umpolung synthesis, Robinson annelation, A schematic analysis of the total synthesis of the following compounds: 2,4 –dimethyl-1,2 –hydroxypentanoic acids, trans-9-metyl-1-decalone and isonootkatone.					
Unit IV	Addition to Multiple Bonds	15 Hours				
	Addition to carbonyl groups – mechanism –Aldol condensation – Perkin reaction –Knoevenagel reaction – Mannion reaction – Cannizaro reaction – Benzoin condensation – Reformatsky reaction – Witting reaction – Grignard reactions. Addition to α , β - unsaturated carbonyl groups – addition of Grignard reagent to α , β - unsaturated carbonyl compounds – Michael addition – Diels – Alder reaction – addition to carbenes and carbeniods to double and triple bonds.					

General mechanistic consideration, nature of migration, migratory
aptitude, memory effect, 1,2- shifts in carbocations – Bayer
Villiger, Demzanov, Hoffman, Curtius, pinacole-pinacolone,
Benzil-Bezilic acid, Beckmann, Lossen, Favorski, Benzidine,
Fries, Cope rearrangements.

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Book

- 1. McMurry, J.E, (2013), "Fundamentals of Organic Chemistry", Cengage Learning, Seventh edition.
- 2. Reinhard Bruckner, (2012), "Advanced Organic Chemistry, Reaction Mechanisms", Academic Press.
- 3. Vitomir, S, Vesna, P.P, (2016), "Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, Springer.

References

- 1. Sunil Kumar, Vinod Kumar, Singh, V.P, (2015), "Pericyclic Reactions: A Mechanistic and problem solving approach" Elsevier Science.
- 2. Morrison R.T, Boyd R.N, (2011), "Organic Chemistry", Prentice Hall, 6th edition.
- 3. Sykes P, "Guidebook to Mechanism in Organic Chemistry", Orient Longman.

E-Resources

- https://en.wikipedia.org/wiki/Pericyclic_reaction.
- https://chem.libretexts.org/Bookshelves/Organic_Chemistry/
- https://www.youtube.com/watch?v=xH9ltFxRCXc
- https://www.slideshare.net/AlexRamaniVincent/addition-to-cc-multi-bonds
- https://en.wikipedia.org/wiki/Rearrangement_reaction#

Course Outcomes

On successful completion of the course, the student will be able to

No.	Course Outcome
CO1	Evaluate concerted reactions via FMO and PMO approach, Electrocyclic reactions, cycloadditions and sigmatropic rearrangements
CO2	Identify the mechanism of various photochemical reactions
CO3	Details of synthetic methods of transition metal complexes in organic chemistry
CO4	Clarify the various types of addition and multiple bond reactions
CO5	Assess the mechanism and synthetic uses of selected reagents and reactions

Mapping of Bloom's Taxonomy – Programme Outcome with Course Outcome

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	1	2	2	2	2
CO2	2	2	3	2	2	3
CO3	1	3	2	2	1	2
CO4	3	1	1	1	3	2
CO5	2	2	2	3	2	3

1 - Low, 2 - Medium & 3- High

			Secti	on A	Section B	Section C
Units	COs	K – Level	MCQs		Either/or Choice	Open Choice
			No. of Questions	K-Level	No. of Questions	No. of Questions
1	CO1	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
2	CO2	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
3	CO3	Upto K3	2	K1 & K2	2(K3&K3)	1(K2)
4	CO4	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
5	CO5	Upto K3	2	K1 & K2	2(K3&K3)	1(K2)
No of Questions to be asked		10		10	5	
No of Questions to be answered			10		5	3
Marks for each Question		1		4	10	
Total M	arks for e	each Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	05	5	5%
K2	5	24	20	49	49	49%
K3	-	16	30	46	46	46%
Total Marks	10	40	50	100	100	100%

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Description	Hours	Mode
Unit I	a) Concerted reactions – orbital symmetry		Chalk and talk,
Pericyclic	and correlation diagram approach - FMO		Power point
Reactions	and PMO approach, Woodward-Hofmann		presentation
	rules	5	
	b) Electrocyclic reactions (1,3-butadiene-		
	cyclobutene and 1,3,5-hexatriene-		
	cyclohexadiene systems) cycloadditions	5	
	[2+2] and [2+4] systems (ethylene-		
	cyclobutane, ethylene and 1,3-butadiene-		
	cyclohexene systems)	5	
	c) Selection rules - sigmatropic reaction		
	(1,3 hydrogen shift, 1,3 carbon shift, 1,5		
	hydrogen shift, 1,5 carbon shift).		

TI	a) Characteristics of shots sections		Challs and talls
Unit II	a) Characteristics of photo reactions –	-	Chalk and talk,
Organic	photo reductions and photo oxidation -	5	Power point
Photochemistry	photoreactions of carbonyl compounds		presentation
	b) Norrish type I and Norrish type II		
	reactions, di-pi methane rearrangement -	5	
	photochemistry of arenes		
	c) Photochemistry of alkenes, cis-trans		
	isomerisation – rearrangements of cyclic	5	
	α,β – unsaturated ketones and 2,5-	-	
	cyclohexadienone – Barton reaction –		
	Paterno Buchi reaction.		
			Challs and talls
Unit III	a) Planning a synthesis – Relay approach	5	Chalk and talk,
Retro Synthetic	and convergent approach to total synthesis,	5	Power point
Methods	functional group inter conversions - use of		presentation
	activating and blocking groups in		
	synthesis,		
	b) Transition metal complexes in organic	5	
	chemistry, Homogeneous hydrogenation,		
	Umpolung synthesis, Robinson		
	annelation,	5	
	c) A schematic analysis of the total	-	
	synthesis of the following compounds: 2,4		
	-dimethyl-1,2-hydroxypentanoic acids,		
	-		
TT •4 TT7	isonootkatone.		<u>(1)</u> 1 1 1
Unit IV	a) Addition to carbonyl groups,	_	Chalk and talk,
Addition to	mechanism, Aldol condensation, Perkin	5	Power point
Multiple Bonds	reaction, knoevenagel reaction, Mannion		presentation,
	reaction, Cannizaro reaction.		Group
	b) Benzoin condensation, Reformatsky		Discussion
	reaction, Witting reaction, Grignard	5	
	reactions. Addition to α , β -unsaturated		
	carbonyl groups.		
	c) Addition of Grignard reagent to α , β -		
	unsaturated carbonyl compounds –	5	
	Michael addition – Diels – Alder reaction –		
	addition to carbenes and carbeniods to		
	double and triple bonds.		
Unit V	a) General mechanistic consideration,	4	Chalk and talk,
Molecular	nature of migration, migratory aptitude,	-	Power point
		2	•
Rearrangements	b) memory effect, 1,2- shifts in	2	presentation,
	carbocations	_	Group
	c) Bayer Villiger, Demzanov, Hoffman,	5	Discussion
	Curtius, pinacole-pinacolone, Benzil-		
	Bezilic acid, Beckmann,	4	
	d) Lossen, Favorski, Benzidine, Fries,		
1	Cope rearrangements.		

Course Designed by Dr. A. Pandiarajan and Dr. M.S. Dheenadayalan

Programme	M.Sc Chemistry	Programme Code	РСН		
Course Code	20PCHC42	Number of Hours / Cycle	5		
Semester	IV	Max. Marks	100		
Part	III	Credit	5		
	Core Co	urse XIII			
Course Title	Inorganic Chemistry IV			Т	Р
Cognitive Level	Up to K4			-	-

Preamble

The course are enables the students to gain knowledge on concepts of Nuclear chemistry, Bioinorganic chemistry, inorganic chains, rings and cages compound and, acquire the detailed knowledge on Non aqueous solvents.

Unit I	Nuclear Chemistry –I	15 Hours			
	Nuclear magnetic resonance, BLOCH'S NMR Setup, nuclear				
	configuration – Nuclear stability and Binding energy-parity and its				
	conservation – nuclear forces Theory. Types of radioactive rays,				
	Detection and measurement of radioactivity - GM counter method				
	and Wilson cloud chamber method, Laws of radioactive				
	disintegration - average life and half-life period (related simple				
	problems).				
Unit II	Nuclear Chemistry-II	15 Hours			
	Fission and Fusion reaction -energy release in nuclear fission -				
	mass distribution of fission products – theory of nuclear fission				
	fissile and fertile isotopes – energy from nuclear fusion –				
	thermonuclear reaction in stars – classification of reactors – power				
	nuclear reactor – breeder reactor – nuclear reactions in India.				
	Application of radioactive isotopes: isotope dilution analysis -				
	Carbon dating –Assessing the volume of blood in a patient - Brain				
	tumour location and bone fracture healing- Optimum use of				
	fertilizers - Control of predatory insects- neutron activation				
	analysis.				
Unit III	Bio-Inorganic Chemistry	15 Hours			
	Metal Ions in Biological Systems – Essential and Trace Metals –				
	Na ⁺ /K ⁺ Pump - metalloporphyrins – the porphyrine ring system –				
	chlorophylls – Heme Proteins – Structure and Function of				
	Haemoglobin, Myoglobin, Haemocyanins, Iron storage and				
	transport proteins. Cytochromes – Iron – Sulphur Proteins –				
	Oxygen carriers – Copper Proteins – Metals in Medicines – Metal				
	Deficiency Diseases – Metals used for Diagnosis and				
Unit IV	Chemotherapy – Toxic Effect of Metals. Inorganic Chains – Rings And Cages Compounds	15 Hours			
Umtiv		15 Hours			
	Silicates: Various silicate structures – Structure, property, correlation – Silicones.				
	Poly acids: Classification – isopoly acids like polymolybdate,				
	polyvandate and polytungstate – their structures – heteropolyacids:				
	9 and 6. Heteropolyacids- preparation and structures.				
	Phosphazenes and its polymer – Phosphonitrilic compounds- S_4N_4 -				
	Polymeric sulphur nitride (polythiazyl) Cage compounds:				
	Nomenclature of Boranes and carboranes – Wade's rule – Styx				
	Tromenetature of Doranes and carboranes wade s full - Styx				

	number- preparation and structures of B_4H_{10} , $C_2B_{10}H_{12}$, $(B_{12}H_{12})^2$ -	
	borazine.	
Unit V	Non-Aqueous Solvents	15 Hours
	Chemistry of Non – Aqueous Solvents, classification of solvents,	
	types of chemical reactions in solvents Acid-base, Metathetical,	
	Solvolysis and Redox reactions in liquid ammonia – Hydrogen	
	fluoride - Sulphuric acid and acetic acid solvents- Metal-ammonia	
	solutions – Chemical reactions in liquid sulphur dioxide	

Pedagogy

Class Room Lectures, Power point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Brain storming, Activity, Case Study

Text Book

- 1. U.N.Dash, Nuclear Chemistry, Sultan Chand and Sons, New Delhi, 1991.
- 2. Wahid U. Malik, G.D. Tuli and R. D. Madan, 2006. Selected Topics in Inorganic Chemistry, S. Chand & Co. Ltd., New Delhi.
- 3. G.R.Chatwal and A.K.Bhagi, Bioinorganic Chemistry Himalaya Publishing House

Reference Books

- 1. G.Friedlander, J.W. Kannedy, E.S.Macias and J.M.Miller, Nuclear and Radiochemistry , John Wiley & Sons Inc., New York 1981.
- 2. H.I.Arnidar, Essintials of Nuclear Chemistry, 3rd edn., Wiley Eastern Ltd., New Delhi,1987
- 3. BertiniH.B.Gray, S.J.Leppard and J.S. Valentine, Bioinorganic Chemistry Viva Books Pvt., Ltd., 1998.

E-Resources

- <u>yukawa theory of nuclear forces</u>
- <u>application of radioisotopes in biology</u>
- <u>application of radioisotopes in medicine</u>
- <u>copper containing proteins example</u>
- <u>classification of silicates</u>
- reaction in non aqueous solvents with reference to liquid ammonia

Course Outcomes

After completion of this course, the students will be able to:

CO1	Infer the Nuclear force theory and types of radioactive rays.
CO2	Interpret the Nuclear fission, fusion reaction and applications of radioactive isotopes.
CO3	Identify the following metalloporphyrins, heme proteins and its structures and functions, blue copper proteins, metals in medicines and its toxic effects.
CO4	Classify the various structures of silicates, classifications of polyacids, preparation and structure of cage compounds.
CO5	Simplify the chemistry of Non aqueous solvents and its reactions

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	3	3	2	3
CO2	3	2	2	3	2	3
CO3	2	3	2	1	2	1
CO4	2	2	2	2	1	2
CO5	3	2	2	2	1	2

Mapping of Course Outcomes (COs) with Programme Specific Outcomes

1. High, 2. Medium, 3. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			Sectio	on A	Section B	Section C
Units COs		K-Level	MC	Qs	Either/ or Choice	Section C Open choice No. of Questions 1(K3) 1(K3) 1(K2) 1(K4) 1(K3)
	005		No. of Questions	K-Level	No. of Questions	
1	CO1	Up to K3	2	K1&K2	2(K2&K2)	1(K3)
2	CO2	Up to K3	2	K1&K2	2(K2&K2)	1(K3)
3	CO3	Up to K3	2	K1&K2	2(K3&K3)	1(K2)
4	CO4	Up to K4	2	K1&K2	2(K3&K3)	1(K4)
5	CO5	Up to K4	2	K1&K2	2(K4&K4)	1(K3)
No of C	Questio	ns to be asked	10		10	5
No of (answer	•	ns to be	10		5	3
Marks	for eac	h Question	1		4	10
Total 1	marks f	or each Section	10		20	30

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

Distribution o	f Section -	wise Marks	with K Levels
-----------------------	-------------	------------	---------------

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice	Consolidated (Rounded off)
K1	5			05	5	5%
K2	5	16	10	31	31	31%
K3		16	30	46	46	46%
K4		8	10	18	18	18%
Total Marks	10	40	50	100	100	100%

	Lesson Plan	r	1
Unit	Description	Hours	Mode
Unit I	a. Nuclear magnetic resonance, BLOCH'S NMR	3	Chalk and talk,
	Setup, nuclear configuration		Power point
	b. Nuclear stability and Binding energy, parity and	3	presentation,
	its conservation, nuclear forces Theory		NPTEL Video
	c. Types of radioactive rays, Detection and	3	
	measurement of radioactivity		
	d. GM counter method and Wilson cloud chamber	3	
	method, Laws of radioactive disintegration	2	
	e. Average life and half-life period (related simple	3	
T T 1 / T T	problems).		
Unit II	a. Fission and Fusion reaction – energy release in	3	Chalk and talk,
	nuclear fission, mass distribution of fission products		Power point
	b. Theory of nuclear fission fissile and fertile	2	presentation,
	isotopes, energy from nuclear fusion	2	eLearning
	c. Thermonuclear reaction in stars, classification of		videos
	reactors, power nuclear reactor, breeder reactor,	3	
	nuclear reactions in India.		
	d. Application of radioactive isotopes: isotope		
	dilution analysis, Carbon dating, Assessing the	4	
	volume of blood in a patient	2	
	e. Brain tumour location and bone fracture healing -	3	
	Optimum use of fertilizers, Control of predatory		
Unit III	insects, neutron activation analysis.	3	Challs and talls
	a. Metal Ions in Biological Systems, Essential and Trace Metals, Na ⁺ /K ⁺ Pump	5	Chalk and talk, Power point
	b. Metalloporphyrins, the porphyrine ring system,	3	presentation,
	chlorophylls, Cytochromes	5	NPTEL Video
	c. Hemeproteins, Structure and Function of		NI ILL VICCO
	Haemoglobin, Myoglobin, Haemocyanins, Iron	3	
	storage and transport proteins.	5	
	d. Iron , Sulphur Proteins – Oxygen carriers –	2	
	Copper Proteins	2	
	e. Metals in Medicines, Metal Deficiency Diseases,		
	Metals used for Diagnosis and Chemotherapy,	4	
	Toxic Effect of Metals.		
Unit IV	a. Silicates: Various silicate, Structure, property,	3	Chalk and talk,
2	correlation – Silicones		Power point
	b. Poly acids: Classification – isopoly acids like		presentation,
	polymolybdate, polyvanadate and polytungstate –	3	eLearning
	their structures		videos
	c. Heteropolyacids: 9 and 6 Heteropolyacids -		
	preparation and structures. Phosphazenes and its	3	
	polymer		
	d. Phospho nitrilic compounds - S ₄ N ₄ - Polymeric	2	
	sulphur nitride (polythiazyl)		
	e. Cage compounds: Nomenclature of Boranes and	4	
	carboranes – Wade's rule – Styx number-		
	preparation and structures of B_4H_{10} , $C_2B_{10}H_{12}$,		
	$(B_{12}H_{12})^{2}$ - borazine.		

Unit V	a. Chemistry of Non - Aqueous Solvents,	4	Chalk and talk,
	classification of solvents, types of chemical		Power point
	reactions in solvents		presentation,
	b. Acid-base, Metathetical, Solvolysis and Redox	3	DVD
	reactions in liquid ammonia		presentation
	c. Redox reactions in Hydrogen fluoride	2	
	d. Redox reactions in Sulphuric acid	2	
	e. Redox reactions in acetic acid, Metal-ammonia		
	solutions - Chemical reactions in liquid sulphur	4	
	dioxide		

Course designed by Dr.M.S.Dheenadayalan and Mrs.A.Mariammal

Programme	M.Sc Chemistry	Program	me Code]	РСН
Course Code	20PCHC43	Number of H	Hours / Cyo	ele	5
Semester	IV	Max. 1	Marks		100
Part	III	Cre	edit		5
	Core Co	ourse XIV			
Course Title	Physical Chemistr	$\mathbf{r}\mathbf{y} - \mathbf{I}\mathbf{V}$	L	Т	Р
Cognitive Level	Up to K4		75	-	-

Preamble

This course provides various concepts of chemical kinetics and different principles of kinetics and also provides the applications. Various aspects of surface chemistry are to be discussed.

discussed.		1 <i>2</i> TT
Unit I	Chemical Kinetics – I	15 Hours
	Potential energy surface- Chain reactions – general characteristics	
	Steady state approximations – study of kinetics of chain reactions	
	like H_2 -Br ₂ reaction – decomposition of acetaldehyde and N_2O_5 –	
	study of H_2 - O_2 explosive reactions. Unimolecular reaction rate	
	theories – the simple Lindermann treatment – Hishelwood's theory	
	- RRK theory - Advanced unimolecular theory - Marcus theory or	
	Rice, Ramsperger, Kassel and Marcus (RRKM) theory - Slater's	
	theory. Principle of mictroscopic reversibility and detailed	
	balancing – Kinetic isotope effect – Reactions in solution influence	
	of solvent dielectric constant, ionic strength (Bronsted- Bjerrum -	
	equation - primary and secondary salt effects) and pressure on	
	reaction rates in solution – significance of volume of activation	
Unit II	Chemical Kinetics – II	15 Hours
	Fast reactions techniques - chemical relaxation methods,	
	temperature and pressure jump methods – Flash photolysis – Spin	
	resonance technique in the study of reaction kinetics. Catalysis in	
	biological systems – Enzyme catalysis – Michaelis Menten kinetics	
	- Lineweaver and Burk plot - Eadie's plot - influence of pH on the	
	enzyme catalysis. Heterogeneous catalysis – chemical reaction on	
	solid surfaces - kinetics, and mechanism of unimolecular and	
	biomolecular – reactions – Langmuir – Heinshelwood and	
	Langmuir – Rideal – mechanism – ARRT of surface reactions –	
	NH_3 synthesis, hydrogenation of C_2H_4 and cracking of	
	hydrocarbons.	
Unit III	Surface Chemistry	15 Hours
	Introduction - Adsorption of gases on solids - physisorption and	
	chemisorptions isotherms - Freundlish - Langmuir - BET -	
	Temkin adsorption isotherms. Adorption on liquid surface – surface	
	tension - Gibbs adsorption isotherm - Surface area determination -	
	Electrokinetic phenomena at interfaces- including electro-osmosis	
	and electrophoresis - Spreading of a liquid on another surfactant -	
	monolayers - preparation of LB films - Micelles - Critical micellar	
	concentration (CMC) - structure - biomolecular reaction occurring	
	in a micellar solution - reverse micelles - micro emulsion -	
	Application of photoelectron spectroscopy - ESCA and Auger	
	spectroscopy to the study of surfaces.	

Unit IV	Biophysical Chemistry	15 Hours
	Basic concept of non – equilibrium thermodynamics – Onsager reciprocal relationship – Its application to biological systems – High energy metabolies – ATP and its role in bioenergetics- transfer of potential and coupled reaction – Biological energy conversion in catabolism and anabolism – Role of singlet oxygen in biology – Biophysical applications of Mossbauer recognition – An introduction to super – molecular chemistry and photochemistry.	
Unit V	Radiation Chemistry	15 Hours
	Radiation chemistry – primary stage-secondary stage- Interaction of high energy radiation with matter – radiolysis of water – radiolysis of redox systems using energy transfer from irradiated alkali halides –hydrated electrons – Radiation dosimetry-Rad-Gray- Rontgen-Experimental techniques of radiation chemistry – Frieck Dosimeter and Ceric sulphate dosimeter	

Pedagogy

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Book:

- 1. Peter Atkins and Julio de Paula (2018) Physical Chemistry, (11th edition) Oxford University Press.
- 2. Hofmann, and Andreas (2018) Physical Chemistry Essentials, springer publications.
- 3. Anatol Malijevsk'y, CSc., et al.(2010) Physical Chemistry In Brief, Institute of Chemical Technology, Prague Faculty of Chemical Engineering.

Reference Books:

- 1. LaidlerK.J (1987), Chemical Kinetics 3rdedn., Harper International edn., London
- 2. LaidlerK.J (1969), Theories of Chemical Reaction Rates, McGraw Hill Book Co., London.
- 3. Kalidas.C (1996), Chemical Kinetics Methods New Age International

E-Resources

- Annual Review of Physical Chemistry.
- Smithsonian Physical Tables.
- Lange's Handbook of Chemistry.
- Nature Physical Chemistry.
- <u>Hawley's Condensed Chemical Dictionary.</u>
- Chem.Libretexts.Org

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Infer the fundamentals of electrochemistry and develop the knowledge in electro chemistry	
CO2	Apply the Principles of electrochemical cell models	
CO3	Analyze the Applications of electrochemical cell models	
CO4	Categorize the various instrumental techniques in photochemistry	
CO5	Interpret the various functions of Nanoscience and nanotechnology.	

<u>8</u> -	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	3	1	1
CO2	3	3	2	1	3	3
CO3	2	1	3	1	2	2
CO4	2	3	1	3	1	1
CO5	3	3	2	3	3	3

Mapping of Bloom's Taxonomy – Programme Outcome with Course Outcome

1. Low, 2. Medium & 3. High

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Unit	CO'S	K – Level	MCQs		Either/or Choice	Open Choice
			No. of	K-Level	No. of	No. of
			Questions	K-Level	Questions	Questions
1	CO1	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Upto K3	2	K1 & K2	2(K2&K2)	1(K2)
3	CO3	Upto K4	2	K1 & K2	2(K3&K3)	1(K4)
4	CO4	Upto K4	2	K1 & K2	2(K3&K3)	1(K2)
5	CO5	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
No of Q	uestions	to be asked	10		10	5
No of Questions to be answered		10		5	3	
Marks for each Question		1		4	10	
Total M	larks for e	each Section	10		20	30

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K4 – Examining, analyzing, presentation and make inferences with evidences

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	5	-	-	05	5	5%
K2	5	24	30	59	59	59%
К3	-	16	10	26	26	26%
K4	-	-	10	10	10	10%
Total Marks	10	40	50	100	100	100%

	Lesson Plan		
Unit	Description	Hours	Mode
	 a) Potentialenergy surface. Chain reactions – general characteristics Steady state approximations – study of kinetics of chain reactions like H₂-Br₂ reaction – b) Decomposition of acetaldehyde and N₂O₅ – study 	4	Chalk and talk, Power point presentation
Unit I	of H_2 - O_2 explosive reactions. Unimolecular reaction rate theories – the simple Lindermann treatment – Hishelwood's theory – Rice, Ramsperer and Kassel (RRK) theory	4	
	c) Advanced unimolecular theory - Marcus theory or Rice, Ramsperger, Kassel and Marcus (RRKM) theory – Slater's theory. Principle of mictroscopic reversibility and detailed balancing – Kinetic isotope effect – Reactions in solution influence of solvent dielectric constant, ionic strength (Bronsted- Bjerrum	5	
	 – equation d) Primary and secondary salt effects) and pressure on reaction rates in solution – significance of volume of activation. 	2	
	a) Fast reactions techniques – chemical relaxation methods, temperature and pressure jump methods, ultrasonic absorption technique, reactions in flow system, continuous and stopped flow, shock wave	4	Chalk and talk, Power point presentation
Unit II	tube methods; b) Chemical kinetics in crossed molecular beams – Flash photolysis – Spin resonance technique in the study of reaction kinetics. Catalysis in biological systems – Enzyme catalysis – Michaelis – Menten kinetics- Lineweaver and Burk plot – Eadie's plot – influence of pH on the enzyme catalysis. Heterogeneous catalysis	б	
	c) Chemical reaction on solid surfaces – kinetics, and mechanism of unimolecular and biomolecular – reactions	2	
	d) Langmuir – Heinshelwood and Langmuir – Rideal – mechanism – ARRT of surface reactions – NH_3 synthesis , hydrogenation of C_2H_4 and cracking of hydrocarbons	3	
	a) Introduction – Adsorption of gases on solids – physisorption and chemisorptions isotherms – Freundlish – Langmuir – BET – Temkin adsorption isotherms. Adsorption on liquid surface.	4	Chalk and talk, Power point presentation
Unit III	b) Surface tension – Gibbs adsorption isotherm – Surface area determination – Electro kinetic phenomena at interfaces- including electro-osmosis and electrophoresis	3	
	 c) Spreading of a liquid on another surfactant – monolayers – preparation of LB films – Micelles – d) Critical micellar concentration (CMC) – structure – biomolecular reaction occurring in a micellar 	3	
	solution – reverse micelles – micro emulsion – Application of photoelectron spectroscopy – ESCA and Auger spectroscopy to the study of surfaces.	5	

	a) Basic concept of non – equilibrium		Chalk and
	thermodynamics - Onsager reciprocal relationship -	5	talk, Power
	Its application to biological systems		point
	b) High energy metabolies - ATP and its role in		presentation
Unit IV	bioenergetics- transfer of potential and coupled	4	
	reaction		
	c) Biological energy conversion in catabolism and		
	anabolism – Role of singlet oxygen in biology –	3	
	d) Biophysical applications of Mosshauer recognition		
	- An introduction to super - molecular chemistry and	3	
	photochemistry.		
	a) Radiation chemistry – source energy – interaction		Chalk and
	of high energy radiation with matter	4	talk, Power
	b) radiolysis of water – definition of G-value – mode		point
Unit V	of reaction of hydrated electrons OH and H	4	presentation,
	c) Experimental techniques of radiation chemistry –	4	Group
	Dosimetry		Discussion
	d) Elementary aspects of radiation chemistry in	3	
	biology and industry.		

Course Designed by:1.Dr.S.Ignatius Arockiam and Mrs.G.Benita

Programme	M.Sc Chemistry	Program	Programme Code			РСН	
Course Code	20PCHE41	Number of H	Number of Hours / Cycle			5	
Semester	IV	Max. I	Max. Marks			100	
Part	III	Cre	Credit			5	
	Core Elective	e Course – II A	L				
Course Title	Nano Chemistry		L		Т	Р	
Cognitive Level	up to K4		75		-	-	

Preamble:

This course deals with the knowledge of nanochemistry. Understand the various process techniques available for nano structured material analysis. Impart knowledge on the exotic properties of nano structured material at their size based effect.

Unit I	Fundamentals of nanoscience	15 Hours
	Definition of a nano system - Basic concepts of nanoscience and	
	technology - Scientific revolutions of nanotechnology - atomic &	
	molecular size - Time and length at nanoscale - Scope of	
	nanoscience and technology - Commercial Applications of	
	Nanotechnology.	
Unit II	Nanostructures and Dimensions	15 Hours
	Definition of Nanostructure materials - Classification of	
	nanostructures - zero, one, two and three dimensional	
	nanostructures. Size Dependency in Nanostructures -quantum size	
	effects in nanostructures.	
Unit III	Nanomaterial Synthesis	15 Hours
	Synthesis of nanomaterials - top down and bottom up approach -	
	Method of nanomaterials preparation – Physical methods – Inert	
	gas condensation and evaporation, chemical synthesis - sol-gel and	
	chemical reduction - Biological methods - nanoparticles using	
	plant extracts, bacteria, fungi.	
Unit IV	Nanomaterial Properties	15 Hours
	Surface properties of nanoparticles - Surface to volume ratio-	
	mechanical - optical, - electronic – magnetic - thermal and chemical	
	properties of nanomaterials. Size dependent properties-size	
	dependent absorption spectra - self-assembly in nanotechnology -	
	Types of SAMs, Methods of self-assembly, Applications of self	
T T 1 / T T	assembled monolayers	4.8.11
Unit V	Applications of Nanomaterials	15 Hours
	Applications of metal nanoparticles in technologically imperative	
	fields like sensors,- Nanomaterials for energy storage - Batteries	
	and fuel cells - photovoltaic devices -solar cells - optical memory	
	devices - Quantum nanoelectronic devices -quantum computing.	

Pedagogy

Class Room Lectures, Power point presentation, Group Discussion, Seminar, Quiz, Assignments, Experience Sharing, Brain storming, Activity, Case Study

Text Books

- 1. C. P. Poole and J.F. Owens, "Introduction to Nanotechnology", Wiley Interscience, 2014.
- 2. M. A. Ratner and D. Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea", Prentice Hall PTR, First Edition, 2002.
- 3. T. Pradeep, "Nano: The Essential Nanoscience and Nanotechnology", Tata McGraw hill, 2007.

Reference Books

- 1. G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications", Imperial College Press, 2004
- 2. C. N. R. Rao, A. Muller and A. K. Cheetham, "The Chemistry of nanomaterials: Synthesis, Properties and Applications", Wiley-VCH verlag GmBH & Co.KGA, 2004.
- 3. Ventra M.D, Evoy S, Heflin J.R , Introduction to nanoscale science and technology, Kluwer academic.,2004

E-Resources

- https://en.wikipedia.org/wiki/Nanotechnology
- https://en.wikipedia.org/wiki/Nanomaterials
- https://www.twi-global.com/technical-knowledge/faqs/what-is-a-nanomaterial
- <u>https://old.taltech.ee/public/m/Mehaanikateaduskond/</u>
- https://en.wikipedia.org/wiki/Nanoparticle.

Course Outcomes

On successful completion of the course, the student will be able to

CO1	Apply the basic concepts of nanoscience and technology.
CO2	Organize the Classification of nanostructures
CO3	Examine the Synthesis of nanomaterials.
CO4	Simplify and Analyze the Nanomaterial Properties.
CO	Investigate the various Applications of Nanomaterials.

Mapping of Bloom's Taxonomy - Programme Outcome with Course Outcome

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	1	2	3	1
CO2	2	2	2	1	2	1
CO3	1	2	1	2	1	1
CO4	2	1	2	1	3	1
CO5	2	2	1	2	2	2

1. Low, 2. Medium & 3. High

			Secti		Section B	Section C
Units	COs	s K-	MCQs No. of Questions K-Level		Either/or Choice	Open choice
		Level			No. of Questions	No. of Questions
1	CO1	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)
2	CO2	Upto K3	2	K1 & K2	2(K3&K3)	1(K3)
3	CO3	Upto K4	2	K1 & K2	2(K3&K3)	1(K4)
4	CO4	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)
5	CO5	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)
No of Q asked	uestions	to be	10		10	05
No of Questions to be answered		10		05	03	
Marks f	Marks for each Question		01		04	10
Total M Section	larks for e	each	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	05	-	-	05	5	5%
K2	05	24	20	49	49	49%
K3	-	16	20	36	36	36%
K4	_	-	10	10	10	10%
Total Marks	10	40	50	100	100	100%

Distribution of Section –wise Marks with K Levels

	Lesson Plan		
Unit	Description	Hours	Mode
	a) Definition of a nano system – Basic concepts	4	Chalk and talk,
	of nanoscience and technology		Power point
Unit I	b)Scientific revolutions of nanotechnology	4	presentation,
	c) Atomic & molecular size – Time and length at		Group
	nanoscale	3	Discussion
	d) Scope of nanoscience and technology -		
	Commercial Applications of Nanotechnology.	4	
	a) Definition of Nanostructure materials -	5	Chalk and talk,
Unit II	Classification of nanostructures		Power point
	b) Zero, one, two and three dimensional	5	presentation,
	nanostructures.		Group
	c) Size Dependency in Nanostructures -quantum		Discussion
	size effects in nanostructures.	5	
	a) Synthesis of nanomaterials - top down and	5	Chalk and talk,
	bottom up approach		Power point
	b) Method of nanomaterials preparation –	_	presentation,
Unit III	Physical methods – Inert gas condensation and	4	Group
	evaporation, chemical synthesis	2	Discussion
	c) sol-gel and chemical reduction – Biological	3	
	methods	2	
	d) Nanoparticles using plant extracts, bacteria,	3	
	fungi.	4	<u>Clastila a set (alla</u>
	a) Surface properties of nanoparticles - Surface to	4	Chalk and talk,
	volume ratio- mechanical - optical b) Electronic – magnetic - thermal and chemical		Power point
Unit IV	properties of nanomaterials.	3	presentation, Group
Umtiv	C) Size dependent properties-size dependent	5	Discussion
	absorption spectra - self-assembly in	4	Discussion
	nanotechnology	-	
	d) Types of SAMs, Methods of self-assembly,	4	
	Applications of self assembled monolayers	⊤	
	a) Applications of metal nanoparticles in	5	Chalk and talk,
	technologically imperative fields like sensors,	5	Power point
Unit V	b) Nanomaterials for energy storage - Batteries		presentation,
	and fuel cells - photovoltaic devices	5	Group
	c) Solar cells - optical memory devices -	C C	Discussion
	Quantum nanoelectronic devices -quantum	5	_ 1000001011
	computing.	2	
	r 0.		1

Course Designed by Mr.S.Philip Arockiaraj and Mrs.M.Shanmuga Priya

Programme	M.Sc Chemistry	Programme Code			РСН	
Course Code	20PCHE42	Number of Hours / Cyc		cle	5	
Semester	IV	Max. Marks			100	
Part	III	Credit			5	
	Core Elective Course – II B					
Course Title	Green Chemistry		L	Т	Р	
Cognitive Level	Up to K4		75	-	-	

Preamble:

This course deals to train the students to use eco-friendly approaches in synthesizing agro-based chemicals like insecticides, fungicides, herbicides, bactericides acaricides, weedicides and to emphasize green chemistry approach in crop protection which help to reduce global warming.

Unit I	Introduction to Green Chemistry	15 Hours
	Current status of chemistry and the Environment-Evolution of	
	the Environmental movement: Public awareness - Dilution is	
	the solution to pollution-Pollution prevention	
Unit II	Principles of Green Chemistry	15 Hours
	Definition – Principles of Green Chemistry - Why is this new area of Chemistry getting to much attention - Why should	
	chemist pursue the Goals of Green Chemistry - The roots of	
	innovation – Limitations.	
Unit III	Green Chemistry using Bio Catalytic Reactions	15 Hours
	Introduction - Fermentation and Bio transformations -	
	Production of Bulk and fine chemicals by microbial	
	fermentation- Antibiotics – Vitamins - Bio catalyses synthesis	
	of industrial chemicals by bacterial constructs - Future Tends.	
Unit IV	Green House Effect and Global Warming	15 Hours
	Introduction - How the green house effect is produced - Major sources of green house gases - Emissions of CO2 - Impact of green house effect on global climate - Control and remedial measures of green house effect - Global warming a serious threat - Important points.	
Unit V	Future Trends in Green Chemistry	15 Hours
	Green analytical methods, Redox reagents, Green catalysts;	
	Green nano-synthesis, Green polymer chemistry, Exploring nature, Biomimetic, Proliferation of solvent-less reactions; Noncovalent derivatization, Biomass conversion, emission control.	

Pedagogy

Lecture by use of boards, LCD projectors, Assignments, Seminars, Group Discussion, Self- learning such as use of NPTEL materials and internets, Simulation.

Text Books

- 1. M. Lancaster, "Green Chemistry: an Introductory Text", RSC, 2002
- 2. Sheldon, Arends, Hanefeld, "Green Chemistry and Catalysis", Wiley, New York, 2007.
- 3. Ahluwalia .V.K, Green chemistry, Ane books Pvt Ltd., second Edition ,New Delhi.,2016.

Reference Books

- 1. Anastas & Warner, Green Chemistry: Theory & Practice, Oxford Univ. Press, New York, 1998.
- 2. S. E. Park, J. S. Chang, S. H. Jhung, "The Role of Catalyst for Green Chemistry", Chemworld, Vol. 44 (8), 38, 2004.
- 3. Narosa., Green chemistry, Narosa publishing house, New Delhi, 2007.

E-Resources

- <u>https://www.acs.org/content/acs/en/greenchemistry/principles/12-principles-of-green-chemistry</u>.
- https://www.betterworldsolutions.eu/event/green-chemistry-technology.
- https://en.wikipedia.org/wiki/Greenhouse_effect.
- https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118828083.ch1.
- <u>https://en.wikipedia.org/wiki/Climate_change</u>.

Course Outcomes

On successful completion of the course, the student will be able to

CO1	The connection between common atoms and complex molecules.
CO2	Explain and analyzing simple chemical reactions
CO3	Explore best practices related to organic farming and resource management
CO4	Explain the green house effects.
CO5	About the advance technology in green chemistry

Mapping of Bloom's Taxonomy - Programme Outcome with Course Outcome

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	1	2	3	1
CO2	2	2	2	1	2	1
CO3	2	2	1	2	1	1
CO4	2	1	2	2	3	1
CO5	2	2	1	1	2	2

1. Low, 2. Medium & 3. High

			Section A MCQs		Section B	Section C		
Units COs		K – Level			Either/or Choice	Open Choice		
			No. of Questions K-Level				No. of Questions	No. of Questions
1	CO1	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)		
2	CO2	Upto K3	2	K1 & K2	2(K3&K3)	1(K3)		
3	CO3	Upto K4	2	K1 & K2	2(K3&K3)	1(K4)		
4	CO4	Upto K3	2	K1 & K2	2(K2&K2)	1(K3)		
5	CO5	Upto K2	2	K1 & K2	2(K2&K2)	1(K2)		
No of Questions to be asked		10		10	05			
No of Questions to be answered		10		05	03			
Marks for each Question		01		04	10			
Total Marks for each Section		10		20	30			

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented

K4 – Examining, analyzing, presentation and make inferences with evidences

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without choice	Consolidated (Rounded off)
K1	05			05	5	5%
K2	05	24	20	49	49	49%
K3		16	20	36	36	36%
K4			10	10	10	10%
Total Marks	10	40	50	100	100	100%

Distribution of Section -wise Marks with K Levels

	Lesson Plan						
Unit	Description	Hours	Mode				
	a) Current status of chemistry and the	5	Chalk and talk,				
Unit I	Environment		Power point				
Unit I	b) Evolution of the Environmental	5	presentation,				
	movement: Public awareness		Group Discussion				
	c) Dilution is the solution to pollution-	5					
	Pollution prevention						
	a) Definition – Principles of Green Chemistry	3	Chalk and talk,				
T T •4 TT	b) Why is this new area of Chemistry getting		Power point				
Unit II	to much attention	4	presentation,				
	c) Why should chemist pursue the Goals of		Group Discussion				
	Green Chemistry	4	1				
	d) The roots of innovation – Limitations.	4					
	a) Introduction - Fermentation and Bio	4	Chalk and talk,				
	transformations		Power point				
Unit III	b) Production of Bulk and fine chemicals by	5	presentation,				
	microbial fermentation- Antibiotics		Group Discussion				
	c) Vitamins - Bio catalyses synthesis of		1				
	industrial chemicals by bacterial constructs -	6					
	Future Tends.						
	a) Introduction - How the green house effect	3	Chalk and talk,				
	is produced		Power point				
	b) Major sources of green house gases -	3	presentation,				
.	Emissions of CO ₂		Group Discussion				
Unit IV	c) Impact of green house effect on global	3	_				
	climate						
	d) Control and remedial measures of green	3					
	house effect						
	d) Global warming a serious threat -	3					
	Important points.						
	a) Green analytical methods, Redox reagents,	4	Chalk and talk,				
	Green catalysts;		Power point				
Unit V	b) Green nano-synthesis, Green polymer		presentation,				
	chemistry, Exploring nature, Biomimetic,	6	Group Discussion				
	Proliferation of solvent-less reactions;						
	c) Non-covalent derivation, Biomass						
	conversion, emission control.	5					
			1				

Lesson Plan

Course Designed by Mr.S.Philip Arockiaraj and Mrs.M.Shanmuga Priya

Programme	M.Sc Chemistry Programme Co		ode		РСН
Course Code	20PCHC4P	Number of Hours	/ Cycle		10
Semester	IV	Max. Marks			100
Part	III	Credit			5
Core Project					
Course Title	Project Work		L	Т	Р
Cognitive Level	Up to K4	-	-	150	

Preamble

This course is designed to reinforce the concepts with analytical techniques. It will provide a platform for students to have a hands-on training and present a report on research topic.

Course Requirements and Evaluation:

- 1. The duration of the experimental project is for one semester.
- 2. The students shall submit the project work done in the laboratory in a prescribed format on or before a specified date.
- 3. The student shall work under supervision and consultation with the faculty guide appointed for the purpose at every stage of the research work regularly and get approved.
- 4. The faculty guide shall be responsible for the continuous assessment of the course and his/her recommendation for final evaluation of the project shall be mandatory.
- 5. Students have to submit their project report (2 bounded copies) in the prescribed format (70 to 100 pages) in A4 size. The Project work has to be duly recommended by the faculty guide and the Head of the Department for appearing in the final Viva Voce. The Viva-Voce shall be conducted by an External examiner. The marks will be allotted on the prescribed basis as given below:

A. Continuous Internal Assessment	
Selection of the problem	5 Marks
Analysis of samples collected	5 Marks
Attending project review meeting	10 Marks
Analysis, Conclusion and Reporting	10 Marks
Project report	10 Marks
Total	40 Marks
B. End Semester Examination (Viva Voce)	
Individual Presentation	30 Marks
Answering the queries	30 Marks
Total	60 Marks